• Title/Summary/Keyword: Lumped-parameter Model

Search Result 198, Processing Time 0.026 seconds

Sound Radiation Characteristics of Cracked Rectangular Vibrating Plates (균열을 갖는 직사각형 진동평판의 음향 방사특성)

  • 김태진;이우식
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.119-124
    • /
    • 2002
  • This paper considers the sound radiation characteristics of a craked rectangular vibrating plate, varying the orientation angle of a line crack. The vibration response of the cracked vibrating plate is obtained by using ANSYS, the acoustic theory based on the lumped parameter model is used to calculate radiated sound power. The radiated sound powers are computed with varying the orientation angle of the crack: i.e, 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$. It is found that characteristics of the radiated sound power are very closely related to the crack orientation, vibration mode and crack location.

  • PDF

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF

Calibration of Hydrologic Parameters of HSPF Using HSPEXP Model Performance Criteria (HSPEXP 모형평가지표를 이용한 HSPF 모형의 수문매개변수 보정)

  • Kim, Sang-Min;Seong, Choung-Hyun;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.116-119
    • /
    • 2009
  • HSPF is a comprehensive, continuous, lumped parameter, watershed-scale model that simulates the movement of water, sediment, and a wide range of water quality constituents on pervious and impervious surfaces, in soil profiles, and within streams and well-mixed reservoirs. The hydrologic calibration of HSPF is performed manually using the decision-support software Expert System for the Calibration of HSPF (HSPEXP). The initial values for the HSPF hydrologic parameters were estimated based on guidance from BASINS Technical Note 6. Initial parameter values were adjusted for the study watershed during the calibration period within the recommended ranges for the parameters.

  • PDF

Development of an integrative cardiovascular system model including cell-system and arterial network (세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발)

  • Shim, Eun-Bo;Jun, Hyung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

A Numerical Study on Heat Transfer in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 열전달에 관한 수치해석 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.377-385
    • /
    • 2005
  • An analytical model was developed using the lumped mass parameter method to estimate temperature distribution of metal parts and refrigerant of the hermetic reciprocating compressor, All of the lumped mass has been equated with the first law of thermodynamics. In the delivered equation, correlations of heat transfer coefficient in the heat transfer equation were taken from open literature. The equations are solved by Gauss-Jordan method simultaneously. To verify the developed numerical program, an experiment was conducted with a domestic refrigerator. The compressor which had been installed at the bottom of the experimental refrigerator was modified to measure internal temperature. Model verification test was conducted at $30^{\circ}C$ outdoor temperature with variation of compressor cooling conditions. As a result, there is a good consistency between calculated temperature and measured one.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler (ACM을 이용한 가스 투과막 특성 해석 모델)

  • Song, Dong-keun;Shin, Gahui;Yun, Jinwon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.761-768
    • /
    • 2016
  • Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

Performance Characteristics of High Frequency Jetting Dispenser Featuring Piezoactuator (압전작동기를 이용한 고주파수 젯팅 디스펜서의 성능 특성)

  • Yun, Bo-Young;Nguyen, Quoc Hung;Hong, Seung-Min;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.595-600
    • /
    • 2007
  • This paper presents a new jetting dispenser driven by a piezoelectric actuator at high operating frequency to provide very small dispensing dot size of adhesive in modern semiconductor packaging processes. After describing the mechanism and operational principle of the dispenser, a mathematical model of the structured system is derived by considering behavior of each component such as piezostack and dispensing needle. In the fluid modeling, a lumped parameter method is applied to model the adhesive whose rheological property is expressed by Bingham model. The governing equations are then derived by integrating the structural model with the fluid model. Based on the proposed model, dispensing performances such as dispensing amount are investigated with respect to various input trajectories.

  • PDF

Performance Characteristics of High Speed Jetting Dispenser Using Piezoactuator (압전작동기를 이용한 고속 토출 젯팅 디스펜서의 성능 특성)

  • Yun, Bo-Young;Nguyen, Quoc-Hung;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.432-438
    • /
    • 2008
  • This paper presents a new jetting dispenser driven by a piezoelectric actuator at high operating frequency to provide very small dispensing dot size of adhesive in modern semiconductor packaging processes. After describing the mechanism and operational principle of the dispenser, a mathematical model of the structured system is derived by considering behavior of each component such as piezostack and dispensing needle. In the fluid modeling, a lumped parameter method is applied to model the adhesive whose rheological property is expressed by Bingham model. The governing equations are then derived by integrating the structural model with the fluid model. Based on the proposed model, dispensing performances such as dispensing amount are investigated with respect to various input trajectories.