• Title/Summary/Keyword: Lumped-parameter Model

Search Result 198, Processing Time 0.024 seconds

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

Theoretical Approach; Identification of Dynamic Characteristics for Lumped Mass Beam Model due to Changes of Mass (질량 변화에 따른 Lumped Mass Beam Model의 이론적 동특성 규명)

  • Fawazi, Noor;Yoon, Ji-Hyeon;Kang, Kwi-Hyun;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.389-392
    • /
    • 2008
  • This paper predicts the changes of natural frequencies due to the changes of mass at different point mass stations by using iterative calculation Transfer Matrices Method for different boundary conditions of a single beam structure (fixed-free and fixed-fixed beam). Firstly, the first three natural frequencies of an original beam are obtained using Transfer Matrices Method to verify the accuracy of the obtained results. The results are then compared with the exact solutions before purposely changing the parameter of mass. Both beams are modeled as discrete continuous systems with six-lumped-mass system. A single beam is broken down into a point mass and a massless beam which represent a single station and expressed in matrix form. The assembled matrices are used to determine the value of natural frequencies using numerical interpolation method corresponding to their mode number by manipulating some elements in the assembled matrix.

  • PDF

구속 받는 유연 매니퓨레이터의 병렬 위치/힘 제어

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • 본 논문에서는 환경에 구속 받는 유연 매니퓨레이터의 힘/위치에 대하여 논하고자 한다. 일반적으로, 유연 매니퓨레이터의 모델링 방법은 분포 정수 모델과 집중 정수 모델로 분류할 수 있다. 전자인 분포 정수 모델을 이용해서는 평면 1 링크, 2 링크를 대상으로 한 위치/힘 제어는 가능하나, 운동 방정식의 복잡성으로 인하여 실시간에서 다 링크 다 관절 유연 매니퓨레이터의 힘/위치를 제어하기는 어렵게 여겨져 왔다. 본 논문에서는 집중 정수 모델링 방법인 집중 스프링 질량 모델(Lumped Spring Mass Model)을 이용하여 환경에 구속받는 유연 매니퓨레이터의 운동 방정식을 산출했다 이 모델을 실험기인 유연 매니퓨레이터 ADAM(Aerospace Dual Arm Manipulators)에 적용하여 실시간 위치/힘 제어 실험을 행하였으며, MATLAB를 이용하여 해석했다. 또한, ADAMS$^{TM}$ FEM를 이용하여 분포 정수 모델을 도출하여, 해석하였으며, 이 결과와 집중 정수 모델을 이용한 MATLAB 해석의 결과, 그리고 실험 결과를 비교 분석하여 본 논문에서 제안한 구속받는 유연 매니퓨레이터의 집중 정수 모델 타당성을 입증시켰다.

  • PDF

Dual EKF-Based State and Parameter Estimator for a LiFePO4 Battery Cell

  • Pavkovic, Danijel;Krznar, Matija;Komljenovic, Ante;Hrgetic, Mario;Zorc, Davor
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.398-410
    • /
    • 2017
  • This work presents the design of a dual extended Kalman filter (EKF) as a state/parameter estimator suitable for adaptive state-of-charge (SoC) estimation of an automotive lithium-iron-phosphate ($LiFePO_4$) cell. The design of both estimators is based on an experimentally identified, lumped-parameter equivalent battery electrical circuit model. In the proposed estimation scheme, the parameter estimator has been used to adapt the SoC EKF-based estimator, which may be sensitive to nonlinear map errors of battery parameters. A suitable weighting scheme has also been proposed to achieve a smooth transition between the parameter estimator-based adaptation and internal model within the SoC estimator. The effectiveness of the proposed SoC and parameter estimators, as well as the combined dual estimator, has been verified through computer simulations on the developed battery model subject to New European Driving Cycle (NEDC) related operating regimes.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(III)-Model Parameter Identification- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구 (III)-모델 매개변수 분석-)

  • 이인모;박경호
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.41-50
    • /
    • 1992
  • In general, the conceptual lumped-parameter groundwater flow model to predict the groundwater fluctuations in hillside slopes has unknown model parameters to be estimated from the known input -output data. The purpose of this study is to estimate the optimal model parameters of the groundwater flow model developed by authors. The Mazilnum A Posteriori( MAP) estimation method is utilized for this purpose and it is applied to a site which shows the typical landslide in Korea. The result of application shows tllat the 반AP estimation method can estimate the unknown parameters properly well. The groundwater model developed along with estimation technique applied in this paper will be used for assessing risk of landslides.

  • PDF

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

A Study on Thermal Analytical Model for a Dry Dual Clutch (건식 듀얼 클러치의 열해석 모델에 대한 연구)

  • Liu, Hao;Lee, J.C.;Noh, Y.J.;Cho, J.H.;Lee, H.R.;Koh, J.E.;Kang, J.W.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The stability of friction characteristics and thermal management for a dry type dual clutch transmission (DCT) are inferior to those of a wet clutch. Too high temperature resulting from frequent engagement of DCT speeds up degradation or serious wear of the pressure plate or burning of the clutch disk lining. Even though it is significantly important to estimate the temperature of a dry double clutch (DDC) in real-time, few meaningful study of the thermal model of DDC has been known yet. This study presented a thermal analytical model of lumped parameters for a DDC by analyzing its each component firstly. Then a series of experimental test was carried out on the test bench with a patented temperature telemetry system to validate the proposed thermal model. The thermal model, whose optimal parameter values were found by optimization algorithm, was also simulated on the experimental test conditions. The simulation results of DDC temperature show consistency with the experiment, which validates the proposed thermal model of DDC.

Analysis of the Friction Induced Instability of Disc Brake using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.601-606
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake Using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;홍정혁;이유엽;이정윤;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.702-708
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type Instability is Investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.