• Title/Summary/Keyword: Lumped-Element Circuit

Search Result 54, Processing Time 0.016 seconds

A Design of The Meander Line Inductor With Good Sensitivity Using Aperture Ground plate and Multi-layer PCB (개구 접지 면과 적층 PCB를 이용한 우수한 민감도를 갖는 미앤더 선로 인덕터 설계)

  • Kim, Yu-Seon;Nam, Hun;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we design the meander line inductors with high sensitivity and high quality factor(Q) using high characteristic impedance of aperture ground plate. Sensitivity as a frequency is new defined by variation of effective inductance per analysis frequency range instead of self resonance frequency (SRF). An equivalent lumped circuit is derived to explain the characteristic of high frequency inductor. The 4 nH meander line inductor with aperture ground plate has 0.45 nH/GHz of good sensitivity and 86 of Q at 0.7 GHz.

A Planar Implementation of a Negative Group Delay Circuit (평면 구조의 마이너스 군지연 회로 설계)

  • Jeong, Yong-Chae;Choi, Heung-Jae;Chaudhary, Girdhari;Kim, Chul-Dong;Lim, Jong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.236-244
    • /
    • 2010
  • In this paper, a planar structure negative group delay circuit(NGDC) is proposed to overcome the limited availability of the component values required for the prototype lumped element(LE) NGDC design. From the prototype LE circuit analysis, general design equations and the conditions to obtain the NGD are derived and illustrated. Then the LE circuit is converted into the planar structure by applying the transmission line resonator(TLR) theory. As a design example, the LE NGDC and the proposed planar structure NGDC are designed and compared. To estimate the commercial applicability, 2-stage reflection type planar NGDC with -5.6 ns of total group delay, -0.2 dB of insertion loss, and 30 MHz of bandwidth together with 0.1 dB and 0.5 ns of the magnitude and group delay flatness, respectively, for Wideband Code Division Multiple Access(WCDMA) downlink band is fabricated and demonstrated. Also, to show the applicability of the proposed NGDC, we have configured a simple signal cancellation loop and obtained good loop suppression performance.

Low-Pass Filter with Wide Stop-Band Characteristics Using Controllable Transmission Zeros (제어 가능한 전송 영점을 이용한 광대역 차단 특성을 갖는 저역 통과 필터)

  • Lee, Geon-Cheon;Kim, Yu-Seon;Kim, Kyung-Keun;Lee, Tae-Sung;Na, Hyeon-Sik;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.887-894
    • /
    • 2007
  • In this paper, design and fabrication of the LPF with controllable four transmission zeros using electric coupling and added open stub is presented. Pass-band of the LPF is GSM band, and two transmission zeros are generated by the electric coupling at the WiBro and S-DMB band, And the other two transmission zeros are generated by the open stub at the upper frequencies. Harmonic frequency of the stop-band is suppressed by the realization of the filter using quasi-lumped element with small parasitic values. $C_M$, which is the electric coupling element of the equivalent circuit, is realized by the distance control between the open stubs of the filter structure. The fabricated LPF used teflon substrate with relative permittivity of 2.6. And it has a size of $38{\times}20{\times}0.79 mm^3$, which is including a feed line. The measured 3 dB cut-off frequency is 1.55 GHz, and locations of the transmission zeros are 2.20, 2.43, 4.11 and 6.84 GHz, respectively.

Design of a Miniaturized 5.3 GHz 360° Analog Phase Shifter (소형화된 5.3 GHz 대역 360° 아날로그 위상천이기 설계)

  • Jeong, Hae-Chang;Son, Bon-Ik;Lee, Dong-Hyun;Ahmed, Abdul-Rahman;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.602-612
    • /
    • 2013
  • In this paper, a design and fabrication of miniaturized 5.3 GHz reflection type $360^{\circ}$ analog phase shifter with branch line coupler and $360^{\circ}$ variable reactance load. In order to miniaturize phase shifter, novel branch line coupler is proposed. The novel branch line coupler is miniaturized using transformation of transmission line to T and ${\pi}$ type equivalent circuit. The miniaturized branch line coupler has small size of above 50 % compared with conventional branch line coupler. For wide phase shift range, $360^{\circ}$ variable reactance load structure is adopted. Especially, the structure was improved for linear phase shift by adding transmission line which acts as an impedance transformer. The improved structure was miniaturized using the equivalent lumped-element of transmission line. The fabricated phase shifter with $15{\times}15mm^2$ shows wide phase shift of above $480^{\circ}$, the insertion loss of -4~-6 dB and the reflection loss of below -20 dB at 5.3 GHz under 0~10 V control voltage range.