• Title/Summary/Keyword: Luminous power efficiency

Search Result 96, Processing Time 0.028 seconds

Low Voltage Current Controlled Driving Method for AC PDP

  • Lee, Yang-Keun;Um, Jong-Sik;Kim, Joon-Yub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper presents a new driving method that can drive AC PDPs with low voltage and controlled-current for the sustaining period. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146 V and that luminous efficiency of 1.33 lm/W can be achieved.

  • PDF

Performance Evaluation of 2-Dimensional Light Source using Mercury-free Flat Fluorescent Lamps for LCD Backlight Applications

  • Park, Joung-Hu;Cho, Bo-Hyung;Lee, Ju-Kwang;Whang, Ki-Woong
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2009
  • Recently, 2-dimensional flat light sources have been attracting much attention for its use in LCD backlight applications because of its high luminous efficiency and uniformity. A long-gap discharge, mercury-tree flat fluorescent lamp has been developed, which shows a high brightness ($>5000\;cd/m^2$) and high luminous efficacy (60 lm/W). Additionally, it has a wide operating margin and stable driving condition with the aid of an auxiliary electrode. For driving the lamp, a narrow pulse power to maintain the glow discharge state is required. Since there has been no research for this kind of lamp driving, this paper proposes a newly developed short-pulse, high-voltage lamp-driving scheme. The proposed lamp system uses a ballast with a coupled-inductor in order to raise the short pulse voltage up to the lamp ignition level and to obtain energy-recovery action during the glow discharge mode. The operation principles are presented and also the system performances such as the lighting efficiency, spatial and angular uniformities are evaluated by hardware experiments. The results show that the proposed lighting system is a good candidate for the next-generation of LCD backlight systems.

Selection of a Remote Phosphor Configuration to Enhance the Color Quality of White LEDs

  • Anh, Nguyen Doan Quoc;Le, Phan Xuan;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The remote phosphor structure has been proven to bear greater luminous efficiency than both the conformal phosphor and in-cup phosphor structures; however, controlling its color quality is much more challenging. To solve this dilemma, various researchers have proposed dual-layer phosphor and triple-layer phosphor configuration as techniques to enhance the display brightness of white LEDs (WLEDs). Likewise, this study picked one of these configurations to utilize in multichip WLEDs with five distinct color temperatures in the range from 5600 to 8500 K, for the purpose of improving the optical properties of WLEDs, such as color rendering index (CRI), color quality scale (CQS), luminous efficacy (LE), and chromatic homogeneity. According to the results of this research, the triple-layer phosphor configuration has superior performance compared to other configurations in terms of CRI, CQS, and LE, and yields higher chromatic stability for WLEDs.

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

New Electrode Shape for High Xe-content Gas in AC PDP

  • Park, Cha-Soo;Choi, Joon-Young;Kim, Goon-Ho;Kim, Joong-Kyun;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • One of the most important issues in AC PDP is the improvement of luminous efficiency. One possible method for achieving this aim is by increasing Xe partial pressure in discharge gas mixture. The increase of Xe ratio, however, causes the driving voltage to rise, even if brightness is increased. In this study, a new electrode shape is proposed. A test panel fabricated by using a new electrode shows that efficacy has improved by 25 % and sustain voltage has decreased by 20 % compared with the conventional structure.

Enhancement of the Bright Room Contrast Ratio in a Plasma Display Panel (플라스마 디스플레이 패널에서 명실 콘트라스트 개선)

  • Moon, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • A new electrode structure in a plasma display panel was designed in a way to increase the bright room contrast ratio (BRCR). The area of the black matrix pattern to get a low reflection from the panel surface was enlarged using the new electrode design concept. The electrical characteristics such as firing voltage, voltage margin and power consumption were measured. The luminance of the panel was measured and the luminous efficiency was calculated. It was found that the new electrode structure was very effective to enhance the BRCR.

A Comparative Study on Discharge Characteristics of FHD and QFHD AC PDP (FHD와 QFHD 해상도를 가지는 AC PDP의 방전특성 비교연구)

  • Choi, Yong-Suk;Heo, Jun;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.119-123
    • /
    • 2011
  • We have investigated the luminous efficiency of various cell resolution and structure from 50" FHD to 50" QFHD Plasma Display. The suggested test panels have two different cell array types which are the delta and matrix cell array type. The results showed that, in the case of the suggested QFHDs, the firing and sustain voltage were increased and voltage margin was decreased. These results are caused by the reduced wall voltage and increased charged particle loss, at the side wall. The luminance of the suggested QFHDs was lower from 20% to 40% than that of the suggested FHDs and the power consumption was higher from 42% to 83% than that of the suggested FHDs. In conclusion, the maximum luminous efficiency of the suggested QFHD(D110) has reached about 38%, compared with suggested FHDs($\fallingdotseq$ 2.7 lm/W).

Characteristic of Facing Discharge Front plate Address Electrode Structure in AC PDP

  • Cho, Hyun-Min;Kim, Dong-Hwan;Song, In-Cheol;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.104-107
    • /
    • 2009
  • In order to improve discharge characteristics in AC PDP, we suggest FDFA (Facing Discharge Front plate Address Electrode) structure. By adopting both long facing discharge electrodes and address electrodes in front plate, the FDFA structure make it possible to gain a high luminance, low power consumption, and a high luminous efficiency.

  • PDF

An Electrical and Optical Characteristics of the Color ac Plasma Displays with a New Cell Structure

  • Lee, Woo-Geun;Lee, Jae-Young;Park, Jae-Moon;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.5-9
    • /
    • 2001
  • New types of ac plasma display panel (PDP) cells are designed and tested electro-optically. We proposed two types of sustaining electrode to improve the luminous efficiency. One is the meander electrode, which has longer discharge path length and smaller electrode area than conventional type. The other is the bridge-shaped electrode, which eliminates the transparent electrode near the barrier ribs. They show higher luminous efficiency and lower power consumption than conventional type.

  • PDF

Development of High Efficiency and High Power LED Package for Applying Silicone-Reflector (실리콘 리플렉터를 적용한 고효율 고출력 LED 패키지 개발)

  • Jeong, Hee-Suk;Lee, Young-Sik;Lee, Jung-Geun;Kang, Han-Lim;Hwang, Myung-Keun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.1-5
    • /
    • 2013
  • We developed high-efficient 6W-LED package with simple structure by applying Heat Slug and silicone-reflector. LED package was manufactured in $8.5{\times}8.5mm$ sized multi-chip structure having thickness of $500{\mu}m$ achieved by bonding silicon-reflector with prepreg on top of the plate after implementing the reflector placed on copper substrate Half Etching by thickness of $200{\mu}m$. The luminous flux, luminous efficacy, correlated color temperature, color rendering index and thermal resistance of developed LED was evaluated, and it verified the application of products by applying it to 120W-LED road luminaires through simulation. The luminous efficacy of LED package reached over 130lm/W, and it is possible to be manufactured into 120W-LED road luminaires using 18 packages. In addition, the simulation results showed average of horizontal illuminance and overall illuminance uniformity that is suitable for three-lane road.