• Title/Summary/Keyword: Luminous performance

Search Result 126, Processing Time 0.02 seconds

High Performance Control of LED Drive System for LCD Backlight (LCD 백라이트를 위한 LED 드라이브 시스템의 고성능 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.8-17
    • /
    • 2012
  • This paper proposes high performance control of light emitting diode(LED) drive system for liquid crystal display(LCD) backlight. The CCFL(cold cathode fluorescent lamp)was used to a conventional LCD backlight. Due to improvement on luminous efficiency, long life and wide color gamut, LED has gradually substituted for CCFL as backlight. The backlight using LED is necessary to use many LED. For that reason, the LED backlight is using a lot of LED driving circuits. The many LED driving circuit is generated a current deviation between LED. Eventually, it is caused brightness deviation between LED. Therefore, this paper improves the current deviation using transformer and balancing capacitor to solve this problem. Also, for accurate and uniform brightness control, this paper is applied the artificial intelligent control to a dimming control. This paper is compared with conventional system, and validity of this paper proves through that result.

Analysis of experimental data on daylight responsive dimming system performance for determining on effective dimming ratio (광센서 조광제어시스템의 효율적인 조광율 결정을 위한 실험 데이터 분석)

  • Kim, Ga-Young;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.167-172
    • /
    • 2005
  • This study based on the experimental data on the daylight responsive dimming systems performance. The purpose of this study increases the energy-saving effects by reducing excessive intensity of radiation of artificial lighting through analyzing incident daylight. The photosensor sends amounts of detected luminous flux to digital control unit(DCU) as a signal and then, it can decide dimming ratios, by received a proper dimming signal from DCU. Generally it is effective to control artificial lighting with the different control ratio of each row by setting a photosensor as same numbers and rows as artificial lighting. However, it is ineffective to do in initial costs of systems aspect in offices. By analyzing the data of this performance and finding regular ration between photosensors. we will execute different dimming ratios to each row of artificial lighting by a single photosensor.

  • PDF

Development of Fin Expansion Type Cooling System using Heat Pipes for LED Lightings (히트파이프를 적용한 LED조명용 핀확장형 냉각시스템 개발)

  • Jung, T.S.;Kang, H.K.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • With the advantages of power savings, increased life expectancy and fast response time over traditional incandescent bulb, LEDs are increasingly used for many applications including automotive, aviation, display, and special lighting applications. Since the high heat generation of LED chips can reduce service life, degrade luminous efficiency, and cause variation of color temperature, many studies have been carried out on the optimization of LED packaging and heat sinks. In this study, a fin expansion type cooling device using heat pipe, instead of a solid aluminum heat sink, was designed for LED security lightings based on thermal resistance analysis. Numerical analysis and experimental validation were carried out to evaluate its cooling performance.

Optical Properties with Arc Tube Structure of Ceramic Metal Halide lamps (세라믹 메탈할라이드 램프 아크튜브 구조에 따른 광학적 특성)

  • Lee, Joo-Hoo;Yang, Jong-Kyung;Kim, Nam-Goon;Jang, Hyeok-Jin;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2244-2248
    • /
    • 2008
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

Evaluation on the Cooling Performance to Design Heat sinks for LED lightings (LED 조명용 히트싱크 방열기 설계를 위한 냉각성능 평가)

  • Jung, Tae-Sung;Kang, Hwan-Kook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.778-784
    • /
    • 2012
  • In comparison with some other light sources, LED has merits such as increased life expectancy, fast response, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED has widely used in many industrial fields such as automotive, aviation, display, transportation and special lighting applications. Since the high heat generation of LED chips can cause a reduction in lifetime, degradation of luminous efficiency, and variation of color temperature, studies have been carried out on the optimization of LED packaging and heat sinks. In this study, experiments on measuring the heat generation rate of LED and the cooling performance of a heat sink were carried for analyzing the thermal characteristics of LED lighting system in free convection. From the results, dimensionless correlation on the cooling performance of heat sink in natural convection was proposed with Nusselt number and Rayleigh number as a guideline for designing cooling device of LED lightings.

Performance evaluation by simulation for the angular luminous intensity distributions of marine lanterns using a tilting aspherical Fresnel lens and a C-8 type light bulb (기울어진 비구면 프레넬 렌즈와 C-8 type 전구를 이용한 해상용 랜턴의 배광곡선 시뮬레이션을 통한 성능평가)

  • Cho Hyun Seok;Jo Jae Heung;Park Seungl Nam;Park Chul Woung;Kim Yong Wan;Kim Jong Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.511-518
    • /
    • 2004
  • Providing marine signal lanterns with advantages of little weight as well as large aperture, a Fresnel lens has been adopted to transfer the beam from the lanterns up to 10 nautical miles (18.53 km). A Fresnel lens with the diameter of 250 mm and 300 mm was designed by a lens design program and optimized by adjusting the groove parameters of the lens. The angular luminous intensity distribution (ALID) of this lens was calculated by using an illumination analysis program considering the ALID of a light bulb. At the best alignment of the bulb, the maximum luminous intensities (MLI) of the lantern were 1000 cd (in the case of 250 mm diameter) and 1300 cd (in the case of 300 mm diameter). These are more than the critical value of 720 cd that is the Korean Standard of MLI for the marine lantern. The ALID was investigated as a function of misalignment from the lens focus to determine the tolerance of the alignment ranges.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

Design and Fabrication of a LED Floodlight for Naval Vessels (함정용 LED 투광등 설계 및 제작)

  • Kim, Se-Jin;Kil, Gyung-Suk;Kim, Dong-Geon;Kim, Il-Kwon;Song, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.771-777
    • /
    • 2013
  • This paper dealt with the development of a LED floodlight for naval vessels to replace the conventional floodlight using an incandescent and a halogen lamp. We found a technical solution for current problems of conventional lights and also improved optical characteristics by developing a LED floodlight which has a typical long-lived light source with high efficiency. To satisfy the requirements specified in Korea Standard Vessels (KS V), the optical structure was designed with selected LED package and lens. A LED module was composed of 10 LEDs in series for stable luminous output, and an aluminium heat sink was adopted for effective heat-radiation design. The LED floodlight was fabricated as a module type so that it can easily replace the conventional light source. The power consumption of the prototype floodlight was only a tenth of a conventional one with the same optical performance. Also, a test showed the floodlight satisfied the electrical, optical and environmental requirements of the standards.

Design Guide of Surface and Watertight LED Luminaires for Naval Vessels (함정용 노출.방수형 LED 조명기구의 설계 방안)

  • Kil, Gyung-Suk;Kim, Il-Kwon;Cho, Hyang-Eun;Kwon, Hyuk-Sang;Cho, Heung-Gi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.654-660
    • /
    • 2011
  • This paper dealt with a design guide of LED luminaires to replace the surface and watertight fluorescent lamp (FL) fixtures for naval vessels. Several standards such as Korean Industrial Standard (KS), Korea Defence Standard (KDS) and US Military Standard (MIL) were compared in terms of safety and performance of lighting fixtures. The electrical and optical characteristics like power consumption, total luminous flux, and illumination distribution of the FL fixtures were experimentally analyzed to acquire design rules for LED luminaires. Based on the results, four types of LED luminaires were fabricated, and we proposed a design guide of LED luminaires for naval vessels which save power consumption of 44~51 [%] and increase total luminous flux of 8~13 [%].

Exposure-Limit Distance as a Safety-Indicating Parameter of a High-Intensity Flash Source (고광도 섬광의 안전지표로서 노출제한거리)

  • Park, Seung-Man;Kim, Sang-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • A systematic understanding of the effects of high-intensity flash sources on the human eye is strongly needed, not only for proper use of the sources, but for human eye health. In this study, the exposure-limit distance (ELD), indicating the minimal safe distance in case of seeing by chance a high-intensity flash, is proposed. The optical procedures to determine the ELD of a high-intensity flash are clarified, and the dependence of ELD on its parameters such as luminous intensity, duration, and radius of a flash are thoroughly investigated. From this investigation it is obvious that, while being weakly dependent on duration, the ELD is nearly proportional to the luminous intensity and the radius of a flash. The proposed ELD as an intuitive safety-indicating parameter is more useful and intuitive than the other characteristic parameters of a high-intensity flash. The ELD is expected to be an essential parameter as a safety indicator, to characterize the performance of a high-intensity flash and to promote the safety of the human eye.