• Title/Summary/Keyword: Luminescence intensity

Search Result 293, Processing Time 0.026 seconds

Investigation on the Excitonic Luminescence Properties of ZnO Bulk Crystal (ZnO 기판의 불순물 속박 엑시톤 발광을 이용한 물성 분석)

  • Choi, Jun Seck;Ko, Dong Wan;Jeong, Min Ji;Lee, Sang Tae;Chang, Ji Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.196-200
    • /
    • 2019
  • In this study, photoluminescence (PL) analysis was performed to evaluate the optical properties of commercial ZnO substrates. Particular attention was paid to the bound exciton (BX) luminescence, which is usually the strongest emission intensity of commercial substrates. At 15 K, PL analysis revealed that the BX peak due to donor-type impurities (donor-bound-exciton; DX) dominated, while two-electron satellite (TES) emission, donor-accepter pair (DAP) emission, and LO-phonon replica emission were also observed. The impurity concentration of the ZnO substrate was determined to be $10^{15}$ to $10^{16}/cm^3$ by examination of the temperature variation of DAP, while the half width and intensity change of the luminescence revealed that the temperature change of BX can be interpreted almost the same as the analysis of free-exciton emission.

Absorption and Lumiescence Spectra of Eu(Ⅲ) Complexes with Oxydiacetate and Dipicolinate in Aqueous Solution

  • 김종구;윤수경;강준길
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.854-857
    • /
    • 1996
  • Absorption and luminescence spectra of Eu3+ (aquo) and the two different 1: 3 Eu3+: ligand systems in aqueous solutions are measured under mild acidic pH condition. The oxydiacetate (ODA) and dipicolinate (DPA) ligands, forming the similar geometric complexes, are used in this work. The three intensity parameters, Ωλ (λ=2, 4, and 6) are empirically determined by applying the Judd-Ofelt theorem to the oscillator strengths of the six absorption bands arising from the ground 7F0 state. Among the three intensity parameters, the Ω2 is found to response markedly to a miner change in the ligand environment via the 7F0→5D0 transition. In addition, the relative oscillator strengths of the four luminescence bands in the visible region, assigned to the 5D0→7FJ (J=1, 2, 3 and 4) transitions are obtained to investigate their sensitivity to the ligand environment. Among the four bands, the 610 nm band, attributed to the 5D0→7F2 transition, shows hypersensitivity in the luminescence.

Ce3+ sensitize RE3+ (RE=Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability

  • Phaomei, G.;Yaiphaba, N.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.55-66
    • /
    • 2015
  • Crystalline $Ce^{3+}$ co-doped $LaPO_4$:RE ($RE=Dy^{3+}$, $Tb^{3+}$, $Eu^{3+}$, $Sm^{3+}$) and mix doped rare earth ions of $Dy^{3+}$, $Tb^{3+}$ and $Eu^{3+}$ were prepared by the polyol method at $150^{\circ}C$. Strongly enhance luminescence intensity is obtained with the co-doping of $Ce^{3+}$ with $LaPO_4$:$Dy^{3+}$ and $LaPO_4$:$Tb^{3+}$ due to charge transfer (CT) occurring from $Ce^{3+}$ to $Dy^{3+}$ and $Ce^{3+}$ to $Tb^{3+}$, where as there is no significant changes in luminescence intensity of $Ce^{3+}$ co-doped $Eu^{3+}$ and $Sm^{3+}$ doped $LaPO_4$ samples. The luminescence color can be tuned from green to white by varying the excitation wavelength for the mix ions $Ce^{3+}$, $Dy^{3+}$, $Tb^{3+}$ and $Eu^{3+}$ doped with $LaPO_4$.

Luminescence Property of ZnS:Mn,Mg Phosphor with Excitation of Plasma Blue Light Source

  • Ryu, Si Hong;Kim, Wan Kyu;Lee, Seong Eui
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.24-27
    • /
    • 2013
  • In this paper, we investigated the effect of luminescence properties of various concentrations of magnesium-doped ZnS:Mn phosphor excited by plasma luminescence device. The PL intensity was evaluated in the range of 300~500 nm excitation wavelengths. We found the highest PL intensity of the phosphors excited by 365 nm and 450 nm was observed at Mg concentrations of 1.4 wt% and 0.8 wt%, respectively. In addition, an emission peak was distinguished at 580 nm wavelength. With increasing Mg dopant level, enhanced PL intensity was observed, which is possibly applicable to color converting materials by blue emission for white light sources. Finally, we evaluated the luminance properties of color converting ZnS:Mn,Mg phosphors with plasma blue light source. the white luminance of plasma light source with CIE(0.36,0.26) was established by color converting phosphors of ZnS:Mn with 0.8 wt% Mg.

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

  • Chang, Sung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.

Synthesis and Luminescence Enhancement of Strontium Aluminate Green Phosphor via Spray Pyrolysis (분무열분해 공정을 이용하여 스트론튬 알루미네이트 녹색 형광체의 합성 및 발광 특성 개선)

  • Kim, Mi Na;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.594-599
    • /
    • 2011
  • $SrAl_2O_4:Eu$ green phosphor was prepared by spray pyrolysis and its luminescence properties were controlled by replacing the Al sites with boron and using organic modifier or drying control chemical additive. It was clear that the substitution of B into the Al sites was helpful to obtain pure monoclinic $SrAl_2O_4$ phase and greatly enhance the emission intensity. In terms of the emission intensity, the optimal content of boron was about 1 at% with respect to the aluminum element. The luminescence intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor could be improved by the use of 0.2 M organic additives in the spray solution. Futhermore, using 0.5 M dimethylformamide(DMF) as a drying control chemical with organic additives made it possible to improve about 172% the emission intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor. According to XRD analysis, the organic additive and DMF used enhanced the crystallinity without any change in the crystal phase. When used only the organic additive without DMF, the surface area of the prepared $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor became enlarged. The use of DMF with the organic additive resulted in significant reduction in the surface area. It was concluded that the increase of the crystallinity as well as the reduction of surface area mainly contribute to the improvement in the luminescence intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor prepared using DMF and organic additives.

Analysis for luminescence property about an increase quantity of silicate phosphor and reliability (Silicate 형광체 증가에 대한 발광 특성 및 신뢰성 분석)

  • Yoon, Yanggi;Jang, Joongsoon
    • Journal of Applied Reliability
    • /
    • v.12 no.4
    • /
    • pp.275-285
    • /
    • 2012
  • This paper presents a changes of luminescence property for converted white LEDs with the commercially available silicate phosphor. If silicate phosphor's quantity increase step by step. luminescence property will be changing. we analyze luminescence property for these change and carry out the high temperature aging test for 7,000 hours, the high temperature and humidity aging test for 7,000 hours for reliability. LED degradation not only results in reduced light output but also in color changes. so we monitor correlated color temperature (CCT), chromaticity coordinates(x, y) and spectrum intensity. Those results suggest that humidity factor more bad effect in color changes than temperature factor and Lighting quality is related with quantity of phosphor.

Enhanced Cathode-Luminescence in a InxGa1-xN/InyGa1-y Green Light Emitting Diode Structure Using Two-Dimensional Photonic Crystals

  • Choi, Eui-Sub;Lee, Jae-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.276-279
    • /
    • 2008
  • We report on the enhancement of cathode-luminescence in an $In_xGa_{1-x}N/In_yGa_{1-y}$ green light emitting diode structure using two-dimensional photonic crystals. The square lattice arrays of photonic crystals with diameter/periodicity of 200/500 nm were fabricated by electron beam lithography. Inductively coupled plasma dry etching was used to etch and define photonic crystals. Three samples with different etch depths, i.e., 170, 95, and 65 nm, were constructed. Field emission scanning electron microscope analysis shows that air holes of photonic crystal structure with inverted-cone shapes were fabricated after dry etching. Cathode-luminescence measurement indicated that up to 30-fold enhancement of cathode-luminescence intensity has been achieved.

$SiO_2$ coating of ZnS:Cu,Cl blue-green nano phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun ;Cho, Tai-Yeon;Han, Sang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.75-76
    • /
    • 2007
  • ZnS:Cu,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$-doping concentration has been investigated on the luminescence characteristics of ZnS:Cu,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cu,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF

Synthesis and characteristics of ZnS:Cn,Cl blue-green naao phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun;cho, Tai-Yeon;Han, Sang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.112-113
    • /
    • 2007
  • ZnS:Cn,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$ -doping concentration has been investigated on the luminescence characteristics of ZnS:Cn,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cn,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF