• 제목/요약/키워드: Luminescence intensity

검색결과 295건 처리시간 0.026초

Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성 (Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time)

  • 엄누시아;김택수;좌용호;김범성
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Mn4+ 이온 활성 K2TiF6 불화물 적색형광체의 합성과 발광특성 (Synthesis of K2TiF6:Mn4+ Red Phosphors by a Simple Method and Their Photoluminescence Properties)

  • 김연;우미혜;최성호;심광보;정하균
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.504-511
    • /
    • 2016
  • To prepare $Mn^{4+}$-activated $K_2TiF_6$ phosphor, a precipitation method without using hydrofluoric acid (HF) was designed. In the synthetic reaction, to prevent the decomposition of $K_2MnF_6$, which is used as a source of $Mn^{4+}$ activator, $NH_5F_2$ solution was adopted in place of the HF solution. Single phase $K_2TiF_6$:$Mn^{4+}$ phosphors were successfully synthesized through the designed reaction at room temperature. To acquire high luminance of the phosphor, the reaction conditions such as the type and concentration of the reactants were optimized. Also, the optimum content of $Mn^{4+}$ activator was evaluator based on the emission intensity. Photoluminescence properties such as excitation and emission spectrum, decay curve, and temperature dependence of PL intensity were investigated. In order to examine the applicability of this material to a white LED, the electroluminescence property of a pc-WLED fabricated by combining the $K_2TiF_6$:$Mn^{4+}$ phosphor with a 450 nm blue-LED chip was measured.

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Influences of the Eu Concentration and the Milling Time on Photoluminescence Properties of Y2O3-H3BO3:Eu3+ Powders Prepared by Mechanical Alloying

  • Gong, Hyun-Sic;Kim, Hyun-Goo
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.108-111
    • /
    • 2016
  • $Y_2O_3-H_3BO_3:Eu^{3+}$ powders are synthesized using a mechanical alloying method, and their photoluminescence (PL) properties are investigated through luminescence spectrophotometry. For samples milled for 300 min, some $Y_2O_3$ peaks ([222], [440], and [622]) and amorphous formations are observed. The 300-min-milled mixture annealed at $800^{\circ}C$ for 1 h with Eu = 8 mol% has the strongest PL intensity at every temperature increase of $100^{\circ}C$ (increasing from 700 to $1200^{\circ}C$ in $100^{\circ}C$ increments). PL peaks of the powder mixture, as excited by a xenon discharge lamp (20 kW) at 240 nm, are detected at approximately 592 nm (orange light, $^5D_o{\rightarrow}^7F_1$), 613 nm, 628 nm (red light, $^5D_o{\rightarrow}^7F_2$), and 650 nm. The PL intensity of powder mixtures milled for 120 min is generally lower than that of powder mixtures milled for 300 min under the same conditions. PL peaks due to $YBO_3$ and $Y_2O_3$ are observed for 300-min-milled $Y_2O_3-H_3BO_3$ with Eu = 8 mol% after annealing at $800^{\circ}C$ for 1 h.

초음파 방법을 이용한 CdTe 양자점의 합성 및 특성에 관한 연구 (Study on Sonochemical Synthesis and Characterization of CdTe Quatum Dot)

  • 유정열;김우석;박선아;김종규
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.571-575
    • /
    • 2017
  • 본 연구에서는 초음파 조사법을 사용하여 cadmium telluride (CdTe) 양자점을 합성하였다. 전구체의 비율과 합성 시간을 주 변수로 하여 그에 따른 CdTe 양자점의 광학적 특성과 구조적 특성을 분석하였다. 모든 cadmium (Cd)과 tellurium(Te) 함량비율의 실험에서 합성 시간이 증가함에 따라 CdTe 양자점의 성장에 의해 밴드갭 감소현상이 관찰되었고, 발광 특성을 확인한 결과 510~610 nm 파장 범위에서 장파장으로 이동함을 보였다. 또한 Te의 비율이 증가함에 따라 장파장이동이 빠르게 일어나는 것을 확인하였다. Photoluminescence (PL) 피크 강도를 확인하였을 때 합성시간이 180 min~240 min 사이에서 가장 높은 강도를 보였다. X-ray diffraction (XRD)와 transmission electron microscopy (TEM)으로 구조적 특성을 확인한 결과 zinc blend 구조의 CdTe 양자점을 나타내었으며, 합성시간이 210 min일 때 양자점의 크기는 약 2.5 nm로 균일하게 분산되어 있었으며 fast fourier transform (FFT) 이미지를 확인한 결과 뚜렷한 결정성을 확인하였다.

광학형광법에 의한 란탄족 원소의 정밀분석법에 관한 연구 일부 : TTA, n-Octanol 과 Triton X-100 의 삼성분 착물계에 의한 희토류 원소의 형광분석 방법 (Precision Analysis of Lanthanides by Fluorescence Spectroscopy Part one : Flourimetric Determination of Rare Earths by Ternary Complexes of TTA, n-Octanol and Triton X-100)

  • 차기원;박광원;하영구;김하석
    • 대한화학회지
    • /
    • 제38권9호
    • /
    • pp.653-659
    • /
    • 1994
  • pH 7인 수용액에서 2-thenoyltrifluoroacetone(TTA), n-octanol과 Triton X-100의 존재하에서 유로퓸과 사마륨의 형광세기가 크게 증가하였다. 또한 이 착물에 과량의 $La^{3+}$을 첨가할 때 형광세기가 100배 이상 증가하였다. 유로퓸과 사마륨의 최대 들뜨기 파장은 각각 345 nm과 380 nm이고, 최대 형광파장은 각각 617 nm, 567 nm 이었다. 유로퓸과 사마륨의 형광세기는 농도가 각각 $1{\times}10^{-7}∼1{\tiems}10^{-9}\;M,\;1{\tiems}10^{-5}∼1{\times}10^{-7}\;M$에서 직선적으로 증가하였고, 유로퓸은 $1{\times}10^{-11}\;M$ 그리고 사마륨은 $1{\times}10^{-8}\;M$까지 검출할 수 있었다.

  • PDF

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

$Eu^{3+}$ 농도에 따른 $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ 형광체의 광학적 특성 (Photoluminescence Characteristics of $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ Phosphors by $Eu^{3+}$ ions)

  • 곽현호;김세준;박용서;최형욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.441-442
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles co-doped with $Ce^{3+}$ and $Eu^{3+}$ were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all Eu concentrationin XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Ce,Eu powders had uniform sizes and good homogeneity. The grain size was about 50nm. The photoluminescence spectra of the YAG:Ce,Eu nanoparticles were investigated to determine the energy level of electron transition related to luminescence processes. It was composed a broad band of $Ce^{3+}$ activator into the weak line peak of $Eu^{3+}$ in YAG host. The PL intensity of $Ce^{3+}$ has the wavelengths of 480-650 nm and The PL intensity of $Eu^{3+}$ has main peak at 590nm.

  • PDF

The Synthesis of Eu3+ Doped with TiO2 Nano-Powder and Application as a Pesticide Sensor

  • Yao, Fei;Sun, Yang;Tan, Chunlei;Wei, Song;Zhang, Xiaojuan;Hu, Xiaoyun;Fan, Jun
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.932-935
    • /
    • 2011
  • Using tetrabutyl titanate as precursor, $Eu^{3+}$ doped $TiO_2$ nano-powder was prepared by sol-gel method, the nature of luminescence of nano-powder was studied. The interaction of chlorpyrifos with $Eu^{3+}$ doped $TiO_2$ was studied by absorption and fluorescence spectroscopy. The results indicated the fluorescence intensity of $Eu^{3+}$ doped $TiO_2$ was quenched by chlorpyrifos and the quenching rate constant ($k_q$) was $1.24{\times}10^{11}\;L/mol{\cdot}s$ according to the Stern-Volmer equation. The dynamics of photoinduced electron transfer from chlorpyrifos to conduction band of $TiO_2$ nanoparticle was observed and the mechanism of electron transfer had been confirmed by the calculation of free energy change (${\Delta}G_{et}$) by applying Rehm-Weller equation as well as energy level diagram. A new rapid method for detection of chlorpyrifos was established according to the fluorescence intensity of $Eu^{3+}$ doped $TiO_2$ was proportional to chlorpyrifos concentration. The range of detection was $5.0{\times}10^{-10}-2.5{\times}10^{-7}mol/L$ and the election limit ($3{\sigma}$) was $3.2{\times}10^{-11}$ mol/L.

Pr6O11의 함량 및 열처리 조건에 따른 YPO4:Pr3+ 형광체의 발광 특성 연구 (A Study on the Luminescent Characteristics of YPO4:Pr3+ Phosphor by the Content Ratio of Pr6O11 and Calcination Temperature)

  • 김민준;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.68-73
    • /
    • 2024
  • In this study, the praseodymium-doped yttrium phosphate (YPO4:Pr3+) powder, which is well known for its high luminescent efficiency, and long life in the UV range, was synthesized with various content ratios of Pr6O11 and calcination temperature. Crystal structure and luminescent properties of various phosphor powders based on different concentrations and calcination conditions were characterized by XRD (X-Ray Diffraction) and PL (photoluminescence) spectrometers. From the XRD analysis, the structure of YPO4:Pr3+ which is calcinated at 1,200℃ was stable tetragonal phase and crystal size was calculated about 25 nm by Scherrer equation. PL emission of YPO4:Pr3+ with a different content ratio of Pr6O11 by excitation λexc=250 nm shows that 0.75 mol% phosphor powder has maximum PL intensity and PL decreases with the increase of the ratio of Pr6O11 up to 1.25 mol% which is caused by changes of crystallinity of phosphor powders. With increasing dopant ratio, photo-luminescence Emission decreases due to Concentration quenching, which is commonly observed in phosphors. Currently, 0.75 mol% is considered the optimal doping concentration. A hybrid ultraviolet-emitting device incorporating YPO4:Pr3+ fluorescent material with plasma discharge was fabricated to enhance UV germicidal effects while minimizing ozone generation. UV emission from the plasma discharge device was shown at about 200 nm and 350 nm which caused additional emission of the regions of 250 nm, 315 nm, and 370 nm from the YPO4:Pr3+ phosphor.