• Title/Summary/Keyword: Luminescence Properties

Search Result 482, Processing Time 0.021 seconds

고출력 LED용 형광체 재료 개발

  • Kim, Seon-Uk;Hwang, Jong-Hui
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.80-97
    • /
    • 2018
  • To realize a high luminous efficacy and a high emission color purity for the white-LEDs, the understanding for luminescence properties of the phosphors is significantly important because the performance of white-LEDs is directly affected by the luminescence properties of the phosphors. In this paper, therefore, we reviewed some commercially available $Eu^{2+}$- and $Ce^{3+}$- activated phosphors and discussed for the luminescence properties of these phosphors.

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

  • Chang, Sung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.

Luminescence Properties of $Eu^{2+}$-doped $Ca_2Si_5N_8$ Thin Films ($Eu^{2+}$-doped $Ca_2Si_5N_8$ 박막의 광학특성)

  • Jang, Bo-Yun;Pakr, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.25-27
    • /
    • 2007
  • $Eu^{2+}$-doped $Ca_2Si_5N_8$ was grown on Si(100) substrate using metal-organic deposition (MOD) method and post-annealed at $900^{\circ}C$ in various atmosphere. Luminescence properties of these thin films were investigated with variations of $Eu^{2+}$-doped concentrations and annealing atmosphere. Thin film was formed with clean surface and uniform thickness of about 72 nm. From the measurements of luminescence properties of thin films, film must be post-annealed in nitrogen or mixture of nitrogen and hydrogen atmosphere to emit a sufficient light. For $Ca_{1.5}Eu_{0.5}Si_5N_8$ thin film annealed at $900^{\circ}C$ in nitrogen atmosphere, excitation band from 380 to 420 nm was detected with the maximum intensity at 404 nm and two broad emission bands from 530 to 630 nm were observed. These broad excitation and emission bands must be attributed to the nitrogen incorporations into the films. From the results, $Ca_{2-x}Eu_xSi_5N_8$ thin film has probability for next generation thin film lighting applications such as light emitting diode (LED) or electro-luminescence (EL).

  • PDF

Luminescent Properties of SrTiO3:Al1Pr Phosphors doped with Er and Y (Er과 Y을 첨가한 SrTiO3:Al1Pr 형광체의 발광특성)

  • Park Chang-Sub;Lee Jong-Baek;You Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.971-975
    • /
    • 2006
  • [ $SrTiO_3:Al,Pr$ ] red phosphors doped with Y and Er were synthesized by solid state reaction method. The luminescence properties of $SrTiO_3:Al,Pr$ phosphors before and after doping were examined by photoluminescence. Efforts were paid to elucidate the cause of the increase of green luminescence in $(Sr_{0.95}Y_{0.05})TiO_3:Pr,Er\;and\;(Sr_{0.95}Y_{0.05})TiO_3:Pr,Al$ phosphors. The enhanced green luminescence was interpreted by the energy transfer between $Er^{3+}\;and\;Pr^{3+}$ ions, and the change of bandgap in the $(Sr_{0.95}Y_{0.05})TiO_3:Pr$ phosphors.

$SiO_2$ coating of ZnS:Cu,Cl blue-green nano phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun ;Cho, Tai-Yeon;Han, Sang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.75-76
    • /
    • 2007
  • ZnS:Cu,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$-doping concentration has been investigated on the luminescence characteristics of ZnS:Cu,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cu,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF

Synthesis and characteristics of ZnS:Cn,Cl blue-green naao phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun;cho, Tai-Yeon;Han, Sang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.112-113
    • /
    • 2007
  • ZnS:Cn,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$ -doping concentration has been investigated on the luminescence characteristics of ZnS:Cn,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cn,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF

Synthesis and Luminescence Properties of CaS:Eu2+,Si4+,Ga3+ for a White LED

  • Oh, Sung-Il;Jeong, Yong-Kwang;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.419-422
    • /
    • 2009
  • The luminescence intensity of calcium sulfide codoped with $Eu^{2+},\;Si^{4+}\;and\;Ga^{3+}$ was investigated as a function of the dopant concentration. An enhancement of the red luminescence resulted from the incorporation of $Si^{4+}\;and\;Ga^{3+}\;into\;CaS:Eu^{2+}.\;The\;non-codoped\;CaS:Eu^{2+}$ converted only 3.0% of the absorbed blue light into luminescence. As the $Si^{4+}\;and\;Ga^{3+}$ were embedded into the host lattice, the luminescence intensity increased and reached a maximum of Q = 10.0% at optimized concentrations of the codopants in CaS. Optimized CaS:$Eu^{2+},Si^{4+},Ga^{3+}$ phosphors were fabricated with blue GaN LED and the chromaticity index of the phosphor-formulated GaN LED was investigated as a function of the wt% of the optimized phosphor.

Synthesis and Luminescence Properties of Lanthanide Complexes of a Novel Polyaminopolycarboxylate Ligand

  • Tang, Chang-Quan;Tang, Rui-Ren;Tang, Chun-Hua;Zeng, Zhi-Wen
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1283-1288
    • /
    • 2010
  • A novel polyaminopolycarboxylate ligand with many coordination sites, N,N,$N^1,N^1,N^2,N^2$-[( 2,4,6-tri(aminomethyl)-pyridine]hexakis(acetic acid) (TPHA), was designed and synthesized and its lanthanide complexes $Na_6Tb_2$(TPHA)$Cl_6{\cdot}14H_2O$, $Na_6Eu_2$(TPHA)$Cl_6{\cdot}8H_2O$, $Na_6Gd_2$(TPHA)$Cl_6{\cdot}11H_2O$ and $Na_6Sm_2$(TPHA)$Cl_6{\cdot}9H_2O$ were successfully prepared. The ligand and the complexes were characterized by elemental analysis, IR, mass, NMR and TG-DTA. The TG-DTA studies indicated that the complexes had a high thermal stability, whose initial decomposition temperature was over $270^{\circ}C$. The luminescence properties of the complexes in solid state were investigated and the results suggested that $Tb^{3+}$ and $Eu^{3+}$ ions could be sensitized efficiently by the ligand, especially the Tb(III) complex displayed a very strong luminescence intensity (> 10000) and only displayed characteristic metal-centered luminescence. Also, the correlative comparison between the structure of ligand and luminescence properties showed how the number of the coordination atoms of ligand can be a prominent factor in the effectiveness of ligand-to-metal energy transfer.

Investigation on the Excitonic Luminescence Properties of ZnO Bulk Crystal (ZnO 기판의 불순물 속박 엑시톤 발광을 이용한 물성 분석)

  • Choi, Jun Seck;Ko, Dong Wan;Jeong, Min Ji;Lee, Sang Tae;Chang, Ji Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.196-200
    • /
    • 2019
  • In this study, photoluminescence (PL) analysis was performed to evaluate the optical properties of commercial ZnO substrates. Particular attention was paid to the bound exciton (BX) luminescence, which is usually the strongest emission intensity of commercial substrates. At 15 K, PL analysis revealed that the BX peak due to donor-type impurities (donor-bound-exciton; DX) dominated, while two-electron satellite (TES) emission, donor-accepter pair (DAP) emission, and LO-phonon replica emission were also observed. The impurity concentration of the ZnO substrate was determined to be $10^{15}$ to $10^{16}/cm^3$ by examination of the temperature variation of DAP, while the half width and intensity change of the luminescence revealed that the temperature change of BX can be interpreted almost the same as the analysis of free-exciton emission.

Photophysical Properties of Chlorotriethylphosphinegold(I)

  • Kang, Jun-Gill;Jeong, Yong-Kwang;Oh, Sung-Il;Kim, Hyun-Jun;Park, Chang-Moon;Tiekink, Edward R.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2151-2157
    • /
    • 2010
  • Spectroscopic and quantum mechanical studies of the Et3PAuCl complex were performed to characterize the effect of aurophilicity on the optical properties. When excited with UV light at low temperature, the crystalline complex produced a deep luminescence in both the blue (high-energy) and red (low-energy) regions of the spectrum. The intensity of the low-energy luminescence was markedly reduced in the powdered state and quenched in the solution state. Time-dependent density functional theory (TD-DFT) calculations on electronic structures of both the ground and excited states of aggregates $[Et_3PAuCl]_n$ (n = 1 - 3) indicated that the low-energy luminescence was attributable to Au-centered transitions, which are significantly affected by aurophilic interactions. By contrast, the high-energy luminescence appeared to be independent of the state of the complex and was strongly associated with the charge transfer from Cl to Au.