• Title/Summary/Keyword: Luminance Component

Search Result 76, Processing Time 0.026 seconds

Compound Image Identifier Based on Linear Component and Luminance Area (직선요소와 휘도영역 기반 복합 정지영상 인식자)

  • Park, Je-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • As personal or compact devices with image acquisition functionality are becoming easily available for common users, the voluminous images that need to be managed by image related services or systems demand efficient and effective methods in the perspective of image identification. The objective of image identification is to associate an image with a unique identifier. Moreover, whenever an image identifier needs to be regenerated, the newly generated identifier should be consistent. In this paper, we propose three image identifier generation methods utilizing image features: linear component, luminance area, and combination of both features. The linear component based method exploits the information of distribution of partial lines over an image, while the luminance area based method utilizes the partition of an image into a number of small areas according to the same luminance degree. The third method is proposed in order to take advantage of both former methods. In this paper, we also demonstrate the experimental evaluations for uniqueness and similarity analysis that have shown favorable results.

High-performance of Deep learning Colorization With Wavelet fusion (웨이블릿 퓨전에 의한 딥러닝 색상화의 성능 향상)

  • Kim, Young-Back;Choi, Hyun;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.313-319
    • /
    • 2018
  • We propose a post-processing algorithm to improve the quality of the RGB image generated by deep learning based colorization from the gray-scale image of an infrared camera. Wavelet fusion is used to generate a new luminance component of the RGB image luminance component from the deep learning model and the luminance component of the infrared camera. PSNR is increased for all experimental images by applying the proposed algorithm to RGB images generated by two deep learning models of SegNet and DCGAN. For the SegNet model, the average PSNR is improved by 1.3906dB at level 1 of the Haar wavelet method. For the DCGAN model, PSNR is improved 0.0759dB on the average at level 5 of the Daubechies wavelet method. It is also confirmed that the edge components are emphasized by the post-processing and the visibility is improved.

Color Noise Reduction Method in Non-constant Luminance Signal for High Dynamic Range Video Service

  • Lee, Jinho;Jun, Dongsan;Kang, Jungwon;Ko, Hyunsuk;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.858-867
    • /
    • 2016
  • A high dynamic range (HDR) video service is an upcoming issue in the broadcasting industry. For compatibility with legacy devices receiving a non-constant luminance (NCL) signal, new tools supporting an HDR video service are required. The current pre-processing chain of HDR video can produce color noise owing to the chroma component down-sampling process for video encoding. Although a luma adjustment method has been proposed to solve this problem, some disadvantages still remain. In this paper, we present an adaptive color noise reduction method for an NCL signal of an HDR video service. The proposed method adjusts the luma component of an NCL signal adaptively according to the information of the luma component from a constant luminance signal and the level of color saturation. Experiment results show that the color noise problem is resolved by applying our proposed method. In addition, the speed of the pre-processing is increased more than two-fold compared to a previous method.

Multi-Level Digital Watermarking for Color Image of Multimedia Contents (멀티미디어 컨텐츠의 컬러 영상에 대한 다중 레벨 디지털 워터마킹)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1946-1953
    • /
    • 2006
  • Because the embedded watermark of luminance component guarantees the extraction of ownership information when the color image is converted to gray scale image, the information of ownership right as to the luminance component is embedded in the luminance-chrominance color space such as YCbCr. Therefore, this paper proposes watermark embedding, extraction and authentication algorithm of color image. which considers the device and performance of multimedia contents service by focusing on the robustness and invisibility of watermark. The color image is converted from RGB color space to YCbCr color space, and then the properties of each component of Y(Luminance), Cb(Color Differences) and Cr(Color Differences) are considered in order to embed, extract and certify multi-level watermark in the frequency domain based on the wavelet. As a result, it can guaranteed the robustness for the JPEG compression and invisibility of watermark for multi-level.

Enhancement of Color Images with Blue Sky Using Different Method for Sky and Non-Sky Regions

  • Ghimire, Deepak;Pant, Suresh Raj;Lee, Joonwhoan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.215-218
    • /
    • 2013
  • In this paper, we proposed a method for enhancement of color images with sky regions. The input image is converted into HSV space and then sky and non-sky regions are separated. For sky region, saturation enhancement is performed for each pixel based on the enhancement factor calculated from the average saturation of its local neighborhood. On the other hand, for the non-sky region, the enhancement is applied only on the luminance value (V) component of the HSV color image, which is performed in two steps. The luminance enhancement, which is also called as dynamic range compression, is carried out using nonlinear transfer function. Again, each pixel is further enhanced for the adjustment of the image contrast depending upon the center pixel and its neighborhood pixel values. At last, the original H and V component image and enhanced S component image for the sky region, and original H and S component image and enhanced V component image for the non-sky region are converted back to RGB image.

On the luminance adaptive DPCM coding of chrominance signals (명도신호를 이용한 색도신호의 부호화에 관한 연구)

  • 이해영;이만섭;김성대;김재균
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.10a
    • /
    • pp.88-91
    • /
    • 1984
  • In component coding, it si well known that a Luminance edge provides better masking of the noise added to chrominance signals. So we propose an adapive DPCM coding system which provides good performance in chromainance signals by using the effect of this masking.

  • PDF

Demosaicing Algorithm by Gradient Edge Detection Filtering on Color Component (컬러 성분 에지 기울기 검출 필터링을 이용한 디모자이킹 알고리즘)

  • Jeon, Gwan-Ggil;Jung, Tae-Young;Kim, Dong-Hyung;Kim, Seung-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1138-1146
    • /
    • 2009
  • Digital cameras adopting a single CCD detector collect image color by subsampling in three color planes and successively interpolating the information to reconstruct full-resolution color images. Therefore, to recovery of a full-resolution color image from a color filter array (CFA) like the Bayer pattern is generally considered as an interpolation issue for the unknown color components. In this paper, we first calculate luminance component value by combining R, G, B channel component information which is quite different from the conventional demosaicing algorithm. Because conventional system calculates G channel component followed by computing R and B channel components. Integrating the obtained gradient edge information and the improved weighting function in luminance component, a new edge sensitive demosaicing technique is presented. Based on 24 well known testing images, simulation results proved that our presented high-quality demosaicing technique shows the best image quality performance when compared with several recently presented techniques.

Luminance Correction for Stereo Images using Histogram Interval Calibration (히스토그램 구간 교정을 이용한 스테레오 영상의 휘도 보정)

  • Kim, Seaho;Kim, Hiseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.159-167
    • /
    • 2013
  • In stereo-view system, variations of target camera position or lighting conditions cause discrepancies on the luminance and chrominance components of stereo views. These discrepancies lead to inaccurate frame view prediction and low quality of 3 D video coding. In this paper, an efficient histogram interval calibration method is proposed for stereo-view coding, so as to compensate for the luminance component of target view. First the proposed method is analyzed by the histogram of the target image frame. Then, it divide two sections of histogram of that frame to correct the color discrepancies. Secondly, each section of the target frame is corrected the luminance component by identify the maximum matching region between the reference frame and the target frame. We have verified our proposed histogram matching method in comparison with the other color correction ones. Experimental results show that it can correct better luminance calibration results of PSNR(Peak Signal to Noise Ratio) and has less computation time.

QUALITY IMPROVEMENT OF COMPRESSED COLOR IMAGES USING A PROBABILISTIC APPROACH

  • Takao, Nobuteru;Haraguchi, Shun;Noda, Hideki;Niimi, Michiharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.520-524
    • /
    • 2009
  • In compressed color images, colors are usually represented by luminance and chrominance (YCbCr) components. Considering characteristics of human vision system, chrominance (CbCr) components are generally represented more coarsely than luminance component. Aiming at possible recovery of chrominance components, we propose a model-based chrominance estimation algorithm where color images are modeled by a Markov random field (MRF). A simple MRF model is here used whose local conditional probability density function (pdf) for a color vector of a pixel is a Gaussian pdf depending on color vectors of its neighboring pixels. Chrominance components of a pixel are estimated by maximizing the conditional pdf given its luminance component and its neighboring color vectors. Experimental results show that the proposed chrominance estimation algorithm is effective for quality improvement of compressed color images such as JPEG and JPEG2000.

  • PDF

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.