• Title/Summary/Keyword: Lumbar spine workload

Search Result 4, Processing Time 0.017 seconds

Three-dimensional Analysis of the Spine using Formetric 4D according to Upper Limb Movement and Resistance Application (상지의 움직임과 저항 적용에 따른 Formetric 4D를 이용한 척추의 3차원적 분석)

  • Kim, Hyun-Jin;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • PURPOSE: The aim of this study was to measure changes in spine inclination and thoracolumbar structure and morphology according to upper-extremity movements with and without resistance in order to evaluate the spine stability in workers. METHODS: Forty-eight middle-aged male workers (mean age, 40.48 ± 6.27 years) participated in this study. Using the spine analysis system, changes in the inclination of the spine and structure as well as shape of the thoracolumbar spine were measured. For posture measurement, the postures of standing, lifting the right and left arms (shoulder joint 90° flexion), and lifting with both arms were measured in random order. In addition, variables were measured using a resistance of 3 kg for each posture. The statistical significance level was set at α = .05 for all variables. RESULTS: There were statistically significant differences between the front and back inclinations of the spine, kyphotic curve of the thoracic spine, lordotic curve of the lumbar spine, rotation changes in the thoracolumbar spine, and rotation changes in the T4 vertebra (p < .05). However, there was no significant difference in the left and right tilts of the spine. In the post-hoc analysis, rotation changes in the T4 vertebra showed a significant difference in posture when resistance was applied to the left and right sides CONCLUSION: Causes of musculoskeletal diseases include excessive thoracic spine rotation, torsion, and hyperlordosis of the lumbar spine. Therefore, it is necessary to improve the working environment in order to ensure a healthy posture and prevent musculoskeletal diseases that can reduce the ability to carry various and/or excessive loads.

Analysis of Physiological Bio-information, Human Physical Activities and Load of Lumbar Spine during the Repeated Lifting Work (반복적인 들어올리기 작업시 작업자의 생체정보, 인체활동량 및 허리부하 분석)

  • Son, Hyun-Mok;SeonWoo, Hoon;Lim, Ki-Taek;Kim, Jang-Ho;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.357-365
    • /
    • 2010
  • Workers in the agricultural industry have been exposed to many work-related musculoskeletal disorders. So, our objectives in this study were to measure and analyze worker's physiological bio-information to reduce musculoskeletal disorders in relation to agricultural works. We investigated worker's bio-information of physiological signals during the repeated lifting work such as body temperature, heart rate, blood pressure, physical activity, and heart rate variability. Moreover, we analyzed the workloads of lumbar spine during the repeated lifting work using the 3-axis acceleration and angular velocity sensors. The changes of body temperature was not significant, but the mean heart rate increased from 90/min to 116/min significantly during 30 min of repeated lifting work (p<0.05). The average worker's physical activity(energy consumption rate) was 206 kcal/70kg/h during the repeated lifting work. The workers' acute stress index was more than 80, which indicated a stressful work. Also, the maximum shear force on the disk (L5/S1) of a worker's lumbar spine in static state was 500N, and the maximum inertia moment was 139 $N{\cdot}m$ in dynamic state.

Development of a System Observing Worker's Physiological Responses and 3-Dimensional Biomechanical Loads in the Task of Twisting While Lifting

  • Son, Hyun Mok;Seonwoo, Hoon;Kim, Jangho;Lim, KiTaek;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Purpose: The purpose of this study is to provide analysis of physiological, biomechanical responses occurring from the operation to lifting or twist lifting task appears frequently in agricultural work. Methods: This study investigated the changes of physiological factors such as heart rate, heart rate variability (HRV) and biomechanical factors such as physical activity and kinetic analysis in the task of twisting at the waist while lifting. Results: Heart rates changed significantly with the workload. The result indicated that the workload of 2 kg was light intensity work, and the workload of 12 kg was hard intensity work. Physical activity increased as the workload increased both on wrist and waist. Besides, stress index of the worker increased with the workload. Dynamic load to herniated discs was analyzed using inertial sensor, and the angular acceleration and torque increased with the workload. The proposed measurement system can measure the recipient's physiological and physical signals in real-time and analyzed 3-dimensionally according to the variety of work load. Conclusions: The system we propose will be a new method to measure agricultural workers' multi-dimensional signals and analyze various farming tasks.

Effects of Foot Placement and Height of Bed Surface on Load of the Lumbar Spine During Transfer Activity (인체모형 옮기기 시 발의 배치와 옮기는 지면 높이가 허리척추에 미치는 영향)

  • Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.283-291
    • /
    • 2010
  • The purpose of this study was to investigate the effect of foot placement and height of bed surface on lumbar spine load in a dummy transfer activity. Fifteen healthy male students participated in this study. All subjects were involved in four different conditions according to foot placement (11 figure and $90^{\circ}$ figure) and height of bed surface (44 cm and 66 cm) randomly. Muscular activations of the biceps brachii, rectus femoris, elector spinae using surface-EMG, vertical ground reaction using force plate, and L4/L5 compression force using 3DSSPP (3D Static Strength Prediction Program) were measured and analysed. The results showed that muscular activations were not significantly different for the various conditions except for the rectus femoris on the right side (p<.05). Futhermore, the vertical ground reaction and L4/L5 compression force were significantly different conditions (p<.05). In conclusion, it is suggested that foot placement at $90^{\circ}$ figure is safer for transfer activity compared with the 11 figure.