• Title/Summary/Keyword: Lumbar spinal fusion surgery

Search Result 90, Processing Time 0.031 seconds

A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System (척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구)

  • Kim, Sung-Min;Yang, In-Chul;Kang, Ho-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.

Lateral Lumbar Interbody Fusion and in Situ Screw Fixation for Rostral Adjacent Segment Stenosis of the Lumbar Spine

  • Choi, Young Hoon;Kwon, Shin Won;Moon, Jung Hyeon;Kim, Chi Heon;Chung, Chun Kee;Park, Sung Bae;Heo, Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.755-762
    • /
    • 2017
  • Objective : The purpose of this study is to describe the detailed surgical technique and short-term clinical and radiological outcomes of lateral lumbar interbody fusion (LLIF) and in situ lateral screw fixation using a conventional minimally invasive screw fixation system (MISF) for revision surgery to treat rostral lumbar adjacent segment disease. Methods : The medical and radiological records were retrospectively reviewed. The surgery was indicated in 10 consecutive patients with rostral adjacent segment stenosis and instability. After the insertion of the interbody cage, lateral screws were inserted into the cranial and caudal vertebra using the MISF through the same LLIF trajectory. The radiological and clinical outcomes were assessed preoperatively and at 1, 3, 6, and 12 months postoperatively. Results : The median follow-up period was 13 months (range, 3-48 months). Transient sensory changes in the left anterior thigh occurred in 3 patients, and 1 patient experienced subjective weakness; however, these symptoms normalized within 1 week. Back and leg pain were significantly improved (p<0.05). In the radiological analysis, both the segmental angle at the operated segment and anterior disc height were significantly increased. At 6 months postoperatively, solid bony fusion was confirmed in 7 patients. Subsidence and mechanical failure did not occur in any patients. Conclusion : This study demonstrates that LLIF and in situ lateral screw fixation may be an alternative surgical option for rostral lumbar adjacent segment disease.

Contribution of Lateral Interbody Fusion in Staged Correction of Adult Degenerative Scoliosis

  • Choi, Seung Won;Ames, Christopher;Berven, Sigurd;Chou, Dean;Tay, Bobby;Deviren, Vedat
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.716-722
    • /
    • 2018
  • Objective : Lateral interbody fusion (LIF) is attractive as a less invasive technique to address anterior spinal pathology in the treatment of adult spinal deformity. Its own uses and benefits in treatment of adult degenerative scoliosis are undefined. To investigate the radiographic and clinical outcomes of LIF, and staged LIF and posterior spinal fusion (PSF) for the treatment of adult degenerative scoliosis patients, we analyzed radiographic and clinical outcomes of adult degenerative scoliosis patients who underwent LIF and posterior spinal fusion. Methods : Forty consecutive adult degenerative scoliosis patients who underwent LIF followed by staged PSF at a single institution were retrospectively reviewed. Long-standing 36" anterior-posterior and lateral radiographs were taken preoperatively, at inter-stage, 3 months, 1 year, and 2 years after surgery were reviewed. Outcomes were assessed through the visual analogue scale (VAS), 36-Item Short Form Health Survey (SF-36), and Oswestry Disability Index (ODI). Results : Forty patients with a mean age of 66.3 (range, 49-79) met inclusion criteria. A mean of 3.8 levels (range, 2-5) were fused using LIF, while a mean of 9.0 levels (range, 3-16) were fused during the posterior approach. The mean time between stages was 1.4 days (range, 1-6). The mean follow-up was 19.6 months. Lumbar lordosis was significantly restored from $36.4^{\circ}$ preoperatively up to $48.9^{\circ}$ (71.4% of total correction) after LIF and $53.9^{\circ}$ after PSF. Lumbar coronal Cobb was prominently improved from $38.6^{\circ}$ preoperatively to $24.1^{\circ}$ (55.8% of total correction) after LIF, $12.6^{\circ}$ after PSF respectively. The mean pelvic incidence-lumbar lordosis mismatch was markedly improved from $22.2^{\circ}$ preoperatively to $8.1^{\circ}$ (86.5% of total correction) after LIF, $5.9^{\circ}$ after PSF. Correction of coronal imbalance and sagittal vertebral axis did not reach significance. The rate of perioperative complication was 37.5%. Five patients underwent revision surgery due to wound infection. No major perioperative medical complications occurred. At last follow-up, there were significant improvements in VAS, SF-36 Physical Component Summary and ODI scores. Conclusion : LIF provides significant corrections in the coronal and sagittal plane in the patients with adult degenerative scoliosis. However, LIF combined with staged PSF provides more excellent radiographic and clinical outcomes, with reduced perioperative risk in the treatment of adult degenerative scoliosis.

Comparison of Outcomes of Multi-Level Anterior, Oblique, Transforaminal Lumbar Interbody Fusion Surgery : Impact on Global Sagittal Alignment

  • Jiwon, Yoon;Ho Yong, Choi;Dae Jean, Jo
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • Objective : To compare the outcomes of anterior lumbar interbody fusion (ALIF), oblique lumbar interbody fusion (OLIF), and transforaminal lumbar interbody fusion (TLIF) in terms of global sagittal alignment. Methods : From January 2007 to December 2019, 141 adult patients who underwent multilevel interbody fusion for lumbar degenerative disorders were enrolled. Regarding the approach, patients were divided into the ALIF (n=23), OLIF (n=60), and TLIF (n=58) groups. Outcomes, including local radiographic parameters and global sagittal alignment, were then compared between the treatment groups. Results : Regarding local radiographic parameters, ALIF and OLIF were superior to TLIF in terms of the change in the anterior disc height (7.6±4.5 mm vs. 6.9±3.2 mm vs. 4.7±2.9 mm, p<0.001), disc angle (-10.0°±6.3° vs. -9.2°±5.2° vs. -5.1°±5.1°, p<0.001), and fused segment lordosis (-14.5°±11.3° vs. -13.8°±7.5° vs. -7.4°±9.1°, p<0.001). However, regarding global sagittal alignment, postoperative lumbar lordosis (-42.5°±9.6° vs. -44.4°±11.6° vs. -40.6°±12.3°, p=0.210), pelvic incidence-lumbar lordosis mismatch (7.9°±11.3° vs. 6.7°±11.6° vs. 11.5°±13.0°, p=0.089), and the sagittal vertical axis (24.3±28.5 mm vs. 24.5±34.0 mm vs. 25.2±36.6 mm, p=0.990) did not differ between the groups. Conclusion : Although the anterior approaches were superior in terms of local radiographic parameters, TLIF achieved adequate global sagittal alignment, comparable to the anterior approaches.

Posterior Thoracic Cage Interbody Fusion Offers Solid Bone Fusion with Sagittal Alignment Preservation for Decompression and Fusion Surgery in Lower Thoracic and Thoracolumbar Spine

  • Shin, Hong Kyung;Kim, Moinay;Oh, Sun Kyu;Choi, Il;Seo, Dong Kwang;Park, Jin Hoon;Roh, Sung Woo;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.922-932
    • /
    • 2021
  • Objective : It is challenging to make solid fusion by posterior screw fixation and laminectomy with posterolateral fusion (PLF) in thoracic and thoracolumbar (TL) diseases. In this study, we report our experience and follow-up results with a new surgical technique entitled posterior thoracic cage interbody fusion (PTCIF) for thoracic and TL spine in comparison with conventional PLF. Methods : After institutional review board approval, a total of 57 patients who underwent PTCIF (n=30) and conventional PLF (n=27) for decompression and fusion in thoracic and TL spine between 2004 and 2019 were analyzed. Clinical outcomes and radiological parameters, including bone fusion, regional Cobb angle, and proximal junctional Cobb angle, were evaluated. Results : In PTCIF and conventional PLF, the mean age was 61.2 and 58.2 years (p=0.46), and the numbers of levels fused were 2.8 and 3.1 (p=0.46), respectively. Every patient showed functional improvement except one case of PTCIF. Postoperative hematoma as a perioperative complication occurred in one and three cases, respectively. The mean difference in the regional Cobb angle immediately after surgery compared with that of the last follow-up was 1.4° in PTCIF and 7.6° in conventional PLF (p=0.003), respectively. The mean durations of postoperative follow-up were 35.6 months in PTCIF and 37.3 months in conventional PLF (p=0.86). Conclusion : PTCIF is an effective fusion method in decompression and fixation surgery with good clinical outcomes for various spinal diseases in the thoracic and TL spine. It provides more stable bone fusion than conventional PLF by anterior column support.

A Comparison Study on the Change in Lumbar Lordosis When Standing, Sitting on a Chair, and Sitting on the Floor in Normal Individuals

  • Bae, Jun-Seok;Jang, Jee-Soo;Lee, Sang-Ho;Kim, Jin-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.1
    • /
    • pp.20-23
    • /
    • 2012
  • Objective : To compare radiographic analysis on the sagittal lumbar curve when standing, sitting on a chair, and sitting on the floor. Methods : Thirty asymptomatic volunteers without a history of spinal pathology were recruited. The study population comprised 11 women and 19 men with a mean age of 29.8 years. An independent observer assessed whole lumbar lordosis (WL) and segmental lordosis (SL) between L1 and S1 using the Cobb's angle on lateral radiographs of the lumbar spine obtained from normal individuals when standing, sitting on a chair, and sitting on the floor. WL and SL at each segment were compared for each position. Results : WL when sitting on the floor was reduced by 72.9% than the average of that in the standing position. Of the total decrease in WL, 78% occurred between L4 to S1. There were significant decreases in SL at all lumbar spinal levels, except L1-2, when sitting on the floor as compared to when standing and sitting on a chair. Changes in WL between the positions when sitting on a chair and when sitting on the floor were mostly contributed by the loss of SL at the L4-5 and L5-S1 levels. Conclusion : When sitting on the floor, WL is relatively low; this is mostly because of decreasing lordosis at the L4-5 and L5-S1 levels. In the case of lower lumbar fusion, hyperflexion is expected at the adjacent segment when sitting on the floor. To avoid this, sitting with a lordotic lumbar curve is important. Surgeons should remember to create sufficient lordosis when performing lower lumbar fusion surgery in patients with an oriental life style.

Predictable Risk Factors for Adjacent Segment Degeneration After Lumbar Fusion

  • Hyun, Seung-Jae;Kim, Young-Baeg;Hong, Hyun-Jong;Kwon, Jeong-Taik;Suk, Jong-Sik;Min, Byung-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.2
    • /
    • pp.88-94
    • /
    • 2007
  • Objective : The aim of this study is to investigate predictable risk factors for radiologic degeneration of adjacent segment after lumbar fusion and preoperative radiologic features of patients who underwent additional surgery with adjacent segment degeneration. Methods : Between January 1995 and December 2002, 201 patients who underwent lumbar fusion for degenerative conditions of lumbar spine were evaluated. We studied radiologic features, the method of operation, the length of fusion, age, sex, osteoporosis, and body mass index. Special attention was focused on, preoperative radiologic features of patients who required additional surgery were studied to detect risk factors for clinical deterioration. Results : Follow-up period ranged from 3 to 11 years. In our study, 61 [30%] patients developed adjacent segment degeneration, and 15 [7%] patients required additional surgery for neurologic deterioration. Age, the postoperative delay, facet volume, motion range, laminar inclination, facet tropism, and preexisting disc degeneration of adjacent segment considered as possible risk factors. Among these, laminar inclination and preexisting disc degeneration of adjacent segment were significantly correlated with clinical deterioration. Conclusion : The radiologic degeneration of adjacent segment after lumbar fusion can be predicted in terms of each preoperative radiologic factor, age and the postoperative delay. Laminar inclination and preexisting disc degeneration of adjacent segment have shown as strong risk factors for neurologic deterioration. Thus, careful consideration is warranted when these risk factors are present.

Back Muscle Changes after Pedicle Based Dynamic Stabilization

  • Moon, Kyung Yun;Lee, Soo-Eon;Kim, Ki-Jeong;Hyun, Seung-Jae;Kim, Hyun-Jib;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • Objective : Many studies have investigated paraspinal muscle changes after posterior lumbar surgery, including lumbar fusion. However, no study has been performed to investigate back muscle changes after pedicle based dynamic stabilization in patients with degenerative lumbar spinal diseases. In this study, the authors compared back muscle cross sectional area (MCSA) changes after non-fusion pedicle based dynamic stabilization. Methods : Thirty-two consecutive patients who underwent non-fusion pedicle based dynamic stabilization (PDS) at the L4-L5 level between February 2005 and January 2008 were included in this retrospective study. In addition, 11 patients who underwent traditional lumbar fusion (LF) during the same period were enrolled for comparative purposes. Preoperative and postoperative MCSAs of the paraspinal (multifidus+longissimus), psoas, and multifidus muscles were measured using computed tomographic axial sections taken at the L4 lower vertebral body level, which best visualize the paraspinal and psoas muscles. Measurements were made preoperatively and at more than 6 months after surgery. Results : Overall, back muscles showed decreases in MCSAs in the PDS and LF groups, and the multifidus was most affected in both groups, but more so in the LF group. The PDS group showed better back muscle preservation than the LF group for all measured muscles. The multifidus MCSA was significantly more preserved when the PDS-paraspinal-Wiltse approach was used. Conclusion : Pedicle based dynamic stabilization shows better preservation of paraspinal muscles than posterior lumbar fusion. Furthermore, the minimally invasive paraspinal Wiltse approach was found to preserve multifidus muscles better than the conventional posterior midline approach in PDS group.

Anterior Dislodgement of a Fusion Cage after Transforaminal Lumbar Interbody Fusion for the Treatment of Isthmic Spondylolisthesis

  • Oh, Hyeong Seok;Lee, Sang-Ho;Hong, Soon-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.2
    • /
    • pp.128-131
    • /
    • 2013
  • Transforaminal lumbar interbody fusion (TLIF) is commonly used procedure for spinal fusion. However, there are no reports describing anterior cage dislodgement after surgery. This report is a rare case of anterior dislodgement of fusion cage after TLIF for the treatment of isthmic spondylolisthesis with lumbosacral transitional vertebra (LSTV). A 51-year-old man underwent TLIF at L4-5 with posterior instrumentation for the treatment of grade 1 isthmic spondylolisthesis with LSTV. At 7 weeks postoperatively, imaging studies demonstrated that banana-shaped cage migrated anteriorly and anterolisthesis recurred at the index level with pseudoarthrosis. The cage was removed and exchanged by new cage through anterior approach, and screws were replaced with larger size ones and cement augmentation was added. At postoperative 2 days of revision surgery, computed tomography (CT) showed fracture on lateral pedicle and body wall of L5 vertebra. He underwent surgery again for paraspinal decompression at L4-5 and extension of instrumentation to S1 vertebra. His back and leg pains improved significantly after final revision surgery and symptom relief was maintained during follow-up period. At 6 months follow-up, CT images showed solid fusion at L4-5 level. Careful cage selection for TLIF must be done for treatment of spondylolisthesis accompanied with deformed LSTV, especially when reduction will be attempted. Banana-shaped cage should be positioned anteriorly, but anterior dislodgement of cage and reduction failure may occur in case of a highly unstable spine. Revision surgery for the treatment of an anteriorly dislodged cage may be effectively performed using an anterior approach.

Anterior and Posterior Stabilization by One Stage Posterolateral Approach in the Unstable Fracture of Thoracolumbar and Lumbar Spine

  • Lee, Young-Min;Cho, Yang-Woon;Kim, Joon-Soo;Kim, Kyu-Hong;Lee, In-Chang;Bae, Sang-Do
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.1
    • /
    • pp.22-27
    • /
    • 2006
  • Objective : The purpose of this study is to investigate the clinical results of anterior and posterior stabilization by one stage posterolateral approach for the unstable fracture of thoracolumbar and lumbar spine. Methods : By posterolateral approach with curved skin incision, unilateral facet and pedicle were removed. Through this route, corpectomy was performed, and then this space was replaced with mesh cage filled up with autologous bone graft. Both side pedicle screw fixation was followed to upper and lower levels. Results : Six of seven patients of this study showed neurological improvement. The other one patient showed no neurological change. One patient had postoperative infection, another patient had postoperative kyphosis. The other patient had epidural hematoma on operation site after surgery. And all patinets on this study made to have spinal stability except one patient happened postoperative kyphosis. Conclusion : In the unstable fracture of thoracolumbar and lumbar spine, one stage anterior and posterior stabilization and fusion by posterolateral approach seems to be an effective procedure, if we have more care and supplementation.