• 제목/요약/키워드: Lug

검색결과 99건 처리시간 0.02초

전자기력을 이용한 케이블 러그 조인트 개발 (Development of Cable Lug Joint Using Electromagnetic Force)

  • 심지연;강봉용
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.156-161
    • /
    • 2013
  • Recently, there has been a trend in the manufacturing process to focus on the durability of cable lug joint, especially in welding process due to the poor cable lug joint causes many troubles on products and workers during manufacturing process. Therefore development of high quality cable lug joint is important for successful manufacturing process and safety of worker. The Magnetic Pulse Forming(MPF) is one of efficient way to developed a high quality cable lug joint. In MPF, a high strain rate forming process, utilizes a high velocity oblique collision on the workpiece to be formed in required shape. The objective of this paper is to develop of high quality cable lug joint using electromagnetic force. To successfully accomplish this goal, section and electrical contact temperature of developed cable lug joint has been compared with various cable lug joint. Electrical contact temperature of developed cable lug joint by electromagnetic force is lower than manufactured cable lug joint by pressurer and hydraulic pressurer.

Analysis for Soil-Lug Interface Forces of a Lugged Wheel

  • Tadashi Kishimoto;Tetsuji Taniguchi;Ohotomo, Koh-ichi;Makoto Yoshida
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.369-378
    • /
    • 1996
  • A Lugged steel wheel was operated with two kinds of travel reduction on a sandy clay. " Small -sized transucers of the three-surfaced lug type " were installed to the wheel for the measurement of normal and tangential forces acting on a trailing lug side, lug face and a leading lug side separately . The external results acting on each surface were calculated from those measured forces. This results proved qualitatively that the relationships between external forces and lug surfaces obtained from mathematical analyses were external forces and lug surfaces obtained from mathematical analyses were correct. The traction, the motion resistance and the dynamic load were changing at the three lug surface under various operating conditions . Therefore, total analyses of three surface were indispensable to discuss the performance of the wheel lug.

  • PDF

토양-러그 상호작용의 특성 해석 (Analysis of Soil-Lug Interaction Characteristics)

  • 조성찬;;이규승;;이용국;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

Crane Pedestal의 Lug 용접 및 lifting 변형 해석 (Deformation analysis for crane pedestal due to Lug welding and lifting)

  • 박중구;장경복;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.20-22
    • /
    • 2005
  • In this study, deformation of flange of pedestal crane due to Lug welding and lifting. Thermo elasto-plastic analysis was performed using commercial FE code MSC/MARC. The accuracy control of roundness is critical to the final product assembly. Deformation is mainly occurs during Lug welding. So, we determine welding sequence and Lug space in order to reduce deformation. And we also investigate safety of lifting Lug during crane lifting.

  • PDF

탑재용 러그 구조의 설계 시스템 개발 (Development of the Design System for the Lifting Lug Structure)

  • 함주혁
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

선박블록 탑재용 러그구조의 설계합리화를 위한 연구 (A Study for Rationalization of Lifting Lug Design of Ship Block)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

리프팅 러그의 구조 강도 평가 (The Structural Strength Assesment of Lifting Lug)

  • 허남학;이주성
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.42-50
    • /
    • 2014
  • Lifting lugs are frequently used in shipyard to transportate and turn over blocks. As the shipbuilding technology develops, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economic as well as safe design of lug structure, more rigorous analysis is needed. In this study in order to investigate the strength characteristics of two type of lug, that is, D and T type lugs, non-linear strength analysis has been carried out to compare the ultimate strength characteristics of two types of lug varying in-plane and out-of-plane loading directions. Based on the present numerical analysis results, it can be drawn that T type lug is superior to D type lug from view points of ultimate strength and deformation.

선박블록 탑재용 러그구조의 파라메트릭 설계 고찰 (Parametric Design Considerations for Lifting Lug Structure on Ship Block)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

판스프링방식 착륙장치의 러그파손 개선 연구 (A Study of the Lug Fracture Improvement for Composite Leaf Spring Landing Gear)

  • 심대성;장덕현;박차환;김정훈
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.343-349
    • /
    • 2015
  • This is a study for the improvement of the fractured lug structure that connects the landing gear to the fuselage of the aircraft using the composite leaf spring landing gear. The lug surface was analyzed to find out the cause of fracture. The lug was destroyed by the crack initiation and propagation under the repeated stresses. The frictional wears of the lug structure were proceeded and that affected adversely to the crack. Also, the square protrusion of the lug has a weak shape to bring about stress concentration. The design changes were conducted and the test was performed to verify changed design results.

러그의 설계인자(設計因子)가 공기(空氣)타이어의 견인효율(牽引効率) 및 구름저항(抵抗)에 미치는 영향(影響) (Effects of Design Parameters of Lug on Tractive Efficiency and Rolling Resistance of Pneumatic Tires)

  • 정우원;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제10권2호
    • /
    • pp.12-18
    • /
    • 1985
  • In order to investigate the effects of design parameters of lug on the tractive performance of pneumatic tires, soil bin tests were conducted for the test tires having different values of design parameters. The experimental results were presented in terms of lug space, lug angle and lug shape versus the tractive efficiency and rolling resistance of the test tires.

  • PDF