• Title/Summary/Keyword: Lubrication performance

Search Result 384, Processing Time 0.025 seconds

FEM Analysis for Performance Evaluation of Seal in Universal Joint Bearing (유니버설 조인트 베어링용 Seal의 성능평가를 위한 유한요소해석)

  • 김태완;문석만;구영필;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • Seals in universal joint bearing are a important component reinforcing lubrication performance by holding a lubricant and preventing infiltration of dust, moisture, etc. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for the lib type seal and O-ring type seal, FEM analysis are conducted using Mooney-Rivlin Model. The results are indicate that O-ring having higher contact stress and larger contact area than lib type is more profitable.

  • PDF

A Study on Performance Simulation of an Reciprocating Engine for Small Long Endurance Unmanned Aerial Vehicles (소형 장기체공 무인기용 왕복엔진 성능 예측 시뮬레이션 연구)

  • Chang Sung-Ho;Koo Sam-Ok;Shin Younggy
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.820-827
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.

Comparison of performance characteristics of 2-stroke small engine with oil supply methods (오일공급 방식에 따른 2행정 소형원동기의 성능특성 비교)

  • Kim, Byeong-Guk;Choi, Young-Ha;Oh, Jin-Woo;Lee, Dong-Geun;Yoon, Suck-Ju;Kim, Dong-Sun;Han, Jong-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2916-2921
    • /
    • 2008
  • This paper presents the performance and characteristics of small spark-ignited small 2-stroke engine. A single cylinder, two-stroke, air cooled 23cc SI engine for brush-cutter was used in this study. For the performance of the engine, rpm, torque, fuel consumption and lubricate oil consumption were measured, and also HC, CO, NOx emissions and excess air ratio according to throat open ratio under two lubrication method were measured and analyzed. The results showed that maximum of engine rpm is nearly same in both methods and also, torque, power is similar. exhaust emissions tend to decrease with throat open ratio.

  • PDF

New Start-Up Logic for Microturbine by Constant Power Control under an Extremely Low Temperature (극저온 환경에서의 정 출력 제어를 적용한 마이크로터빈의 새로운 시동 로직 개발)

  • Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1249-1255
    • /
    • 2006
  • This paper presents a constant power control logic for perfect starting a microtubine in vehicle. Under extremely low temperature, performance of the start-up system is severely dropped than that of room temperature because of increasing of load of mechanical parts including engine core and drop of the lead-acid battery capacity. Unfortunately, performance drop of lead-acid battery makes severe problems that cause a malfunction of fuel and lubrication system and power fail of digital devices. So we propose the new start-up logic by constant output power control of lead-acid battery using PWM inverter controller for preventing above problems and keeping good performance of start-up system for microturbine. Also, we prove usefulness of new start-up logic through experimental results under $-32^{\circ}C$ ambient temperature.

A Study on the Stem Coefficient of Friction of Motor- operated Gate/Globe halves

  • Jeoung, Rae-Hyuck;Park, Sung-Keun;Lee, Do-Hwan;Kim, Yang-Seok
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.133-143
    • /
    • 2003
  • Stem-stem nut coefficient of friction(COF) in motor-operated gate/globe valves is one of the important factors which determine the performance of the valve/actuators. The COF is affected greatly by the type and condition of the stem-stem nut lubricants, environmental parameters, surface condition of the stem/stem-nuts, and the number of strokes after the lubrication. In this paper, the measured data of the COFs at stem threads of some safety-related motor-operated gate/globe valves in domestic nuclear power plants are presented. In addition, the performance of the lubricants is evaluated by comparing the COFs among those valves. The results show that the measured COF at torque switch trip are higher than the unwedging COF and conservatively applicable to the unwedging COF. It is also shown that the lubricating performance based on the measured COFs varies with the lubricants.

Estimation of Performance Variation of ER Clutch due to Temperature Increase of ER Fluid (ER 유체의 온도상승에 의한 ER 클러치의 성능변화 예측)

  • 이규한;심현해;김창호;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.151-166
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Current problem of this device is that the temperature of ER fluid increases when ER clutch is operating and affects the performance of ER clutch. This study was undertaken to estimate this performance variation due to temperature increase of ER fluid. Analytic power transmission relationships and the temperature increase model using the rheological model of ER fluid were developed and the dynamic model of proposed ER clutch system was constructed, also. With this relationships, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described and performance variations due to temperature increases of ER fluid were estimated. In conclusion, compared with neglecting temperature increase effects, a performance of ER clutch was very differential. Therefore, to achieve uniform performance of ER clutch, we have to improve thermal stability of ER fluid with a view point of material development and design carefully ER clutch considering temperature increase effects with a view point of mechanical design skill.ign skill.

  • PDF

Effect of Oil Groove Shapes on the Characteristic of the Flow Rate at the Journal Bearing with Vertical Type (수직형 저널 베어링의 유량특성에 대한 그루브 형상의 영향)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1664-1670
    • /
    • 2015
  • As journal bearing has a sliding motion between the shaft and bearing with lubricating oil, it produces a hydrodynamic lubrication condition. Journal bearing can receive a large force because it takes a distributed load at the large friction face. As the oil groove or oil hole is made in the journal bearing surface for the journal bearing smoothly working under a hydrodynamic lubrication condition, sufficient lubricating oil is supplied through the clearance of journal bearing. The performance of the journal bearing is changed according to the shapes, sizes and positions of an oil groove. In this paper, the flow rate according to the oil groove shapes (triangle, semicircle and rectangle) among the various oil supply conditions was measured. The shape that discharges the highest flow rate was observed and the groove shape of optimal performance for the journal bearing was determined. The results showed that the flow rate increases with decreasing operating temperature, the influence of temperature on the flow rate decreased with increasing rotational speed, and flow rate in the triangular groove shape was greater than in other shapes.

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

A Study on the Predictive Factors of Sexual Function in Women with Gynecologic Cancer (부인암 여성의 성기능 예측요인)

  • Park, Jeong-Sook;Jang, Soon-Yang
    • Asian Oncology Nursing
    • /
    • v.12 no.2
    • /
    • pp.156-165
    • /
    • 2012
  • Purpose: This study was to identify predictors of sexual function in gynecologic cancer patients. Methods: The participants were 154 patients treated at a university medical center in A city, Korea. The data collection was performed through a structured questionnaire from July to December, 2010. The instruments used in this study were Female Sexual Function Index (FSFI) perceived health status scale, Eastern Cooperative Oncology Group (ECOG) performance status, body image, and depression. Data were analyzed using descriptive statistics, Mann-Whitney test, Kruskal-Wallis test and stepwise multiple regression with the SPSS 18.0. Results: The mean score of perceived health status was 8.42 and sexual function was 8.42. The lowest score among sexual function was lubrication. The scores of sexual function was significantly different by age, job, marital status, period after diagnosis of cancer and diagnosis. There were significant correlations between sexual function, perceived health status, ECOG performance, body image and depression. In multiple regression analysis, predictors were identified as ECOG performance, age, diagnosis and period after diagnosis of cancer (Adj.$R^2$=.28). The most powerful predictor of female sexual function was ECOG performance (19.0%). Conclusion: The above findings indicate that it is necessary to develop a more effective and personalized sexual function improvement program for gynecologic cancer patient.