• 제목/요약/키워드: Lubrication Mechanisms

검색결과 36건 처리시간 0.021초

MOLECULAR BASIS OF LUBRICATION

  • Hsu, S.M.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.49-50
    • /
    • 2002
  • Rapid advancements in analytical instrumentations and techniques in the last several decades offer an unprecedented opportunity to analyze the complex chemistry and probe the surfaces for chemical evidence. Recent developments in nanotechnology provide further ability to examine phenomena and mechanisms at the nanometer level. As a result of these advances, our understanding of the complex lubrication system has improved significantly. This paper will attempt to provide a molecular basis of how lubricant and additives function in lubrication.

  • PDF

유체윤활을 고려한 화학기계적 연마 공정에서의 연마대상과 패드 사이의 유동장 해석 (Hydrodynamic Lubrication Model for Chemical Mechanical Planarization)

  • 김기현;오수익;전병희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2003
  • The chemical mechanical planarization (CMP) process is a method of planarizing semiconductor wafers with a high degree of success. However, fundamental mechanisms of the process are not fully understood. Several theoretical analyses have been introduced, which are focused on kinematics, von Mises stress distributions and hydrodynamic lubrication aspects. This paper is concerned with hydrodynamic lubrication theory as the chemical mechanical planarization model; the three-dimensional Reynolds equation is applied to predict slurry film thickness and pressure distributions between the pad and the wafer. This paper classifies geometry of wafer into 3 types and focuses on the differences between them.

  • PDF

엔진오일용 가변 베인펌프의 수학적 모델 개발 (Development of a mathematic model for a variable displacement vane pump for engine oil)

  • 딩광청;안경관;윤종일;이재신
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.42-51
    • /
    • 2012
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper deals with a modeling method for theoretical flow rate investigation of a typical variable displacement vane-type oil pump. This theoretical model is based on the pump geometric design and dynamic analyses. It can be considered as mandatory steps for a deeper understanding of the pump operation as well as for effectively implementing the pump control mechanisms to satisfy the urgent demands of engine lubrication systems. The developed pump model is finally illustrated by numerical simulations.

SUPERLUBRICITY IN CARBON FILMS

  • Erdemir, Ali
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.163-164
    • /
    • 2002
  • This paper describes a new carbon film that afford superlubricity (i.e, friction coefficients of 0.001- 0.005) and superlow wear rates (i.e., $10^{-11}-10^{-10}mm^3/N.m$) to sliding metallic and ceramic surfaces, when tested in inert test environments. The wear life of these films are more than 1000 km even under very high contact pressures (i.e., 1-3 GPa) and at a wide range of sliding velocities (i.e., 0.1 to 2 m/s). They are produced in a plasma enhanced chemical vapor deposition system at room temperature using highly hydrogenated gas discharge plasmas. Extensive research has shown that films grown in highly hydrogenated gas discharge plasmas (i.e., hydrogen-to-carbon ratio of 6 and above) provide superlow friction and wear coefficients. In full paper, specific conditions under which superlubricity can be achieved in carbon films will be discussed.and a mechanistic model will be proposed to explain the superlubricity of new carbon films.

  • PDF

TiN 박막 처리될 베어링 볼의 마모 수명 및 메커니즘에 관한 연구 (A Study on Wear Life and Mechanisms of TiN Coated Bearing Balls against Steel Disks)

  • 한지훈;조정우;이영제
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.378-384
    • /
    • 2000
  • This paper presents the results of the repeated sliding tests to determine the wear-life of TiN coated AISI 52100 bearing balls deposited by PVD method and to show the wear mechanisms of those. The sliding tests were carried out using a ball-on-disk tribometer under ambient conditions. The coefficient of friction, wear volume and the cycles to failures of TiN coated bearing balls were measured with different normal loads and roughness of lower specimens. On the wear-life diagram, the normal loads and the cycles to failure showed the good linear relation on log-log coordinate. With a decreasing normal load, the diagram showed that the wear-limits, at which the coated bearing balls survived more than 4000cycles were under 0.1N of the normal load.

  • PDF

Study in the Mechanisms of Formation of Transfer Film under the Condition of Wear of Steel AISI1020 by Natural Rubber

  • Wang, De-Guo;Zhang, Si-Wei;He, Ren-Yang;Li, Ming-Yuan
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.223-224
    • /
    • 2002
  • The mechanisms of formation of transfer film under the condition of wear of Steel AISI1020 by natural rubber were investigated. The transfer film was observed and the formation mechanisms were clarified. The formation process of transfer film on the worn surface of the steel could be divided into two stages. Firstly, the adhesive layer emerged on the worn surface of the steel by adhesion of natural rubber. in which the macromolecular chains of natural rubber joined to the surface of the steel by Van der Waals' force. And then, the iron atom and metal oxide reacted with the macromolecular of natural rubber in the adhesive layer and produced Fe-polymer compound. As a result, the transfer film was formed on the worn surface of the steel. The transfer film was joined to the worn surface of the steel by the chemical bonds and electrostatic force.

  • PDF

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

THERMAL FRICTION TORQUE CHARACTERISTICS OF STAINLESS BALL BEARINGS

  • Lee, Jae-Seon;Kim, Ji-Ho;Kim, Jong-In
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.289-290
    • /
    • 2002
  • Stainless steel ball bearings are used in the control element drive mechanism and driving mechanisms such as step motor and gear boxes for the integral nuclear reactor, SMART. The bearings operate in pressurized pure water (primary coolant) at high temperature and should be lubricated with only this water because it is impossible to supply greases or any additional lubricant since the whole nuclear rector system should be perfectly sealed and the coolant cannot contain ingredients for bearing lubrication. Temperature of water changes from room temperature to about 120 degree Celsius and pressure rises up to 15MPa in the nuclear reactor. It can be anticipated that the frictional characteristics of the ball bearings changes according to the operating conditions, however little data are available in the literature. It is found that friction coefficient of 440C stainless steel itself does not change sharply according to temperature variation from the former research, and the friction coefficient is about 0.45 at low speed range. In this research frictional characteristics of the assembled ball bearings are investigated. A special tribometer is used to simulate the axial loading and the bearing operating conditions, temperature and pressure in the driving mechanism in the nuclear reactor. Highly purified water is used as lubricant ‘ and the water is heated up to 120 degree Celsius and pressurized to 15MPa. Friction force is monitored by the torque transducer.

  • PDF

Numerical study of mono-strand anchorage mechanism under service load

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.475-491
    • /
    • 2004
  • Anchorage devices play an important role in post-tensioned bridge structures since they must sustain heavy loads in order to permit the transfer of the prestressing force to the structure. In external prestressing, the situation is even more critical since the anchorage mechanisms, with the deviators, are the only links between the structure and the tendons throughout the service life of the structure. The behaviour of anchorage devise may be studied by using the finite element method. To do so, each component of the anchorage must be adequately represented in order to approximate the anchor mechanism as accurately as possible. In particular, the modelling of the jaw/tendon device may be carried out using the real geometry of these two components with an appropriate constitutive contact law or by replacing these components by a single equivalent. This paper presents the numerical study of a mono-strand anchorage device. The results of a comparison between two different representations of the jaw/tendon device, either as two distinct components or as a single equivalent, will be examined. In the double-component setup, the influence of the wedge configuration composing the jaw, and the influence of lubrication of the anchor, will be assessed.

탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성 (Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers)

  • 봉하동;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.