• Title/Summary/Keyword: Lubricants oil

Search Result 457, Processing Time 0.018 seconds

온도, 속도, 그리고 하중 변화에 따른 볼 베어링용 그리스의 수명평가 (Life Evaluation of Grease for Ball Bearings According to Temperature, Speed, and Load Changes)

  • 손정훈;김세웅;최병호;이승표
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.7-13
    • /
    • 2021
  • Ball bearing is a device that supports and transmits a load acting on a rotating shaft, and it is a type of rolling bearings that uses the rolling friction of the balls by inserting balls between the inner ring and the outer ring. Grease, which is prepared by mixing a thickener with a base oil, is a lubricant commonly used in bearings and has the advantage of a simple structure and easy handling. Bearings are increasingly being used in high value-added products such as semiconductors, aviation, and robots in the era of the 4th industrial revolution. Accordingly, there is an increasing demand for bearing grease. The selection of grease is an important factor in the bearing design. Therefore, a study must be conducted on the grease life evaluation to select an appropriate grease according to operating conditions such as a high temperature, high rotational speed, and high load. In this study, we evaluate the life of ball-bearing grease according to various operating conditions, namely, temperature, speed, and load changes. For this, we develop and theoretically verify a grease life test machine for ball bearings. We conduct a life test of grease according to various operating conditions of bearings and predict the grease life with a 10% and 50% failure probability using the Weibull analysis. In addition, we analyze the oxide characteristics of the grease over time using the Fourier transform infrared spectroscopy and the deterioration characteristics of the grease using the carbonyl index.

유류 오염 토양 중 산화방지제 정성 분석을 통한 항공유(JP-8) 유종 판별 (Identification of Jet fuel (JP-8) in Petroleum Hydrocarbon Contaminated Soil through the Qualitative Analysis of Antioxidants)

  • 김용훈;이군택;장한전;조윤주;김문건;최재호;강지영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.37-48
    • /
    • 2022
  • Accurate analysis of petroleum hydrocarbons in soil is an important prerequisite for proper source tracking of contamination. Identification of petroleum compounds is commonly carried out by peak pattern matching in gas chromatography. However, this method has several technical limitations, especially when the soils underwent biological, physical and chemical transformation. For instance, it is very difficult to distinguish jet fuel (JP-8) from kerosene because JP-8 is derivatized from secondary reaction between chemical agents (e.g. anti-oxidants, antifreezer and so on) and kerosene. In this study, an alternative method to separately analyze JP-8 and kerosene in the petroleum hydrocarbon contaminated soil was proposed. Qualitative analyses were performed for representative phenolic antioxidants [2,6-di-tert-butyl phenol (2,6-DTBP), 2,4-di-tert- butylphenol(2,4-DTBP), 2,6-di-tert-butyl-4-methyl phenol (2,6-DTBMP)] using a two dimensional gas chromatograph mass spectrometer (2D GC×GC-TOF-MS). This qualitative analysis of antioxidants in soil would be a useful complementary tool for the peak pattern matching method to identify JP-8 contamination in soil.

사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향 (THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

식별제(Unimark 1494DB) 정량시험에서 파란색 색소(Orimax Blue 2N, Orimax Green 151), Quinizarin, 토파졸(P-250) 및 윤활유 원료(P-8)의 흡광도상승 효과 (Absorbance Elevation of Orimax Blue 2N, Orimax Green 151, Quinizarin, Topasol (P-250) and Lubricant (P-8) on the Spectrophotometric Analysis of Unimark 1494 DB)

  • 이지윤;김창종
    • 약학회지
    • /
    • 제50권5호
    • /
    • pp.313-321
    • /
    • 2006
  • There are three kinds of liquid petroleum marker which is extracted by the basic or acidic, and both developer. Korean marker, Unimark 1494 DB (marker) have been spectrophotometrically analysed by the determination of absorbance at 582 nm after base extraction by Unimark 1494 DB Developer C-5 (developer). Some blue dyes which have same reactive radical of marker and can be changed deep blue color in base developer extraction (BDE), may be increased absorbance at 582 nm, but dyes or markers which can be increased the absorbance, were not unclear. In this experiment, effects of three dyes or marker such as Orimax Green 151 (the mixture of CI Solvent Yellow 16 and CI Solvent Blue 70), quinizarin and Orimax Blue 2N (CI Solvent Blue 35), and two solvent such as topasol (P-250) and lubricant (P-8) on the absorbance were studied by HITACHI Recording Spectrophotometer U-3300. It shows that all of them increased absorbance at 582 nm after BDE. Absorbance at 582 nm can be showed 0.0544 by Orimax Green 151 at the concentration of 3.96 mg/l, quinizarin at the concentration of 1.38 mg/l, and Orimax Blue 2N at the concentration of 2.73 mg/l in the artificial petroleum (normal diesel oil: topasol: lubricant=2 : 4: 4), respectively. Absorbance, 0.0544 indicates that concentration of marker is 1.64 mg/l in the reference curves, respectively. And also these results can be showed that the artificial petroleum have about 10% cheep fuel such as kerosene which have marker (16.0 mg/l). Absorbance of P-250 was 0.01361-0.22842 depending upon the purchasing date, and that of P-8 was 0.05644. pH of developer was 14.83, and so this result indicates that Unimark 1494 DB is a base extractable petroleum marker, phenylazophenol (US Patent No. 5,252,106). In the BDE, the slight color of Orimax Blue 2N, Orimax Green 151 and quinizarin in artificial petroleum changed to deep bright blue color, respectively. These result indicate that the absorbance at 582 nm by BDE may be increased not only by azo, diazo, amine and ketone (anthraquinone, coumarin) dyes or markers, but also the contaminants of P-250 and P-8 which have same as reactive radical of dyes or markers.

자성유체 윤활제의 개발 동향

  • 김영규;심우전;김청균
    • Tribology and Lubricants
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 1996
  • 자성유체는 자연에서 추출한 것이 아니라 자화성(Magnetizability)과 유도성(Flowability)을 동시에 갖도록 합성한 특수액체이다. 자성유체는 1960년대 중반에 미국의 NASA에서 처음 개발된 이후로 윤활, 밀봉, 감쇄, 의료 등의 분야에서 응용연구가 많이 진행되었기 때문에 고도의 정밀도를 요하는 항공, 우주산업, 컴퓨터와 반도체 분야 등에서 실용화가 크게 진전되고 있다. 특수물질일 자성유체는 전기적으로 도체인 10nm 정도의 미세한 자기입자(Magnetic particles)에 코팅을 한 후, 이것을 물, 탄화수소, 플루오르카본, 에스터 등의 매개유체(Carrier Fluids)에 혼합시켜서 콜로이드 상태로 사용하게 된다. 자성유체는 미세한 자기입자들이 매개유체내에서 서로 충돌하면서 반발력을 발생시켜서 상호간에 늘 콜로이드 상태를 유지하고 있으며, 이 특수유체가 자기장의 영향을 받게 되면 점도가 증가하면서 특이한 성질을 갖게 된다. 상대 접촉 운동면에 경계마찰이나 혼합마찰을 하게 되면 윤활상태는 비교적 나쁘다. 이러한 마찰지역에 콜로이드상의 자성유체 윤활제를 공급하면 기존의 윤활제에 비하여 대단히 효과적으로 윤활을 할 수 있게 된다. 그러나 자성유체 윤활제가 마찰부위에 원활하게 공급하기 위해서는 미끄럼 마찰부에서 자기장을 잘 형성시킬 수 있는 도체이어야 하기 때문에 특별한 윤활 시스템 설계가 제시되어야 한다. 자성유체 윤활제는 합성으로 제조된 특수물질로 여러가지 장점을 갖고는 있으나 기존 윤활유와의 적합성, 마찰열, 밀봉압력 등의 조건에서 제한적으로 사용될 수 밖에 없으므로 항공, 우주 산업이나 석유 화학분야와 같이 특수 환경에서만 사용되고, 또한 기존의 광유계 윤활제에 비하여 대단히 고가하는 문제점을 갖고 있다. 그러나 윤활 마찰면의 다양화와 가혹한 사용조건은 자성유체 윤활제의 연구개발 필요성을 크게 증대시키고 있다.xed Effects Model)을 결정하고, 각각에 해당하는 통계모형을 구축하였다. 이 결과 (1) 업종 및 기업규모별로 그룹간에 유의한 특성이 발견되었으며, (2) R&D 및 광고투자는 기업의 시장성과를 설명하는 중요한 변수이나, (3) R&D 투자의 경우는 광고에 비해 불확실성이 존재하는 것으로 나타났고, (4) 수리모형에서 도출된 한계원리가 통계모형에서도 유효한 것으로 드러났다.등을 토대로 한 10대 산업을 육성하기 위하여 과학기술부는 기술수요조사를 바탕으로 49개 주요기술을 도출하여, 과학기술 일류 국가 실현, 국민소득 2만불 달성이라는 국가적 슬로건을 내걸고 “차세대 성장동력” 창출을 위한 범정부차원의 기획과 연구비의 집중투자를 추진하고 있다.달성하기 위해서는 종합류류 전산망의 시급한 구축과 함께 화물차의 적재율을 높이고 공차율을 낮출 수 있는 운송체계의 수립이 필요한 것으로 판단된다. 그라나 이러한 화물전용차선의 효과는 단기적인 치유책일 수밖에 없기 때문에 물류유통 시설의 확충을 위한 사회간접자본의 구축을 서둘러 시행하여야 할 것이다.으로 처리한 Machine oil, Phenthoate EC 및 Trichlorfon WP는 비교적 약효가 낮았다.>$^{\circ}$E/$\leq$30$^{\circ}$NW 단열군이 연구지역 내에서 지하수 유동성이 가장 높은 단열군으로 추정된다. 이러한 사실은 3개 시추공을 대상으로 실시한 시추공 내 물리검층과 정압주입시험에서도 확인된다.. It was resulted from increase of weight of single cocoon. "Manta"2.5ppm produced 22.2kg of cocoon. It is equal to 9% increase in index, as compared to that of control. In case

장기 저장연료의 열안정성 및 연료접촉 고무오링의 수명예측 연구 (A Study on the Thermal Stability of Long-Term Fuel Storage and Lifetime Estimation of Rubber O-ring in Contacted with Fuel)

  • 정근우;홍진숙;김영운;한정식;정병훈;권태수;서동욱;성민준;권영일
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.197-207
    • /
    • 2018
  • Thermal deterioration of fuel due to long-term storage influences engine performance and causes malfunctions. Fuel stability is usually evaluated via heat resistance and thermal stability during a brief heat shock at high temperature; storage stability in this scenario means that there is very little change in the quality of the fuel during long-term storage. In addition, rubber-based products such as oil seals, O-rings, and rubber hoses can influence the quality of the fuel. When these rubber products are in contact with fuel, they can swell, mechanically weaken, and occasionally crack, thus leaking low molar weight rubber and additives including plasticizer and antioxidant into the fuel to degrade its properties and shorten its useful lifetime. This study determines the thermal stabilities of three kinds of synthetic fuels by evaluating their low temperature kinematic viscosities, chemical composition changes via GC analyses, gross heat of combustion, and color changes. We evaluate the compression set of O-rings by immersing one NBR and two FKM rubber O-rings in the three synthetic fuel samples in airtight containers at variable storage temperatures for six months; from this, we estimate the lifetimes of the O-rings using the Power law model. There were very little changes in the chemical compositions and gross heat of combustion after six months of the experiment. The lifetimes are thus dependent on the materials of the rubber products, and in particular, the FKM O-ring was calculated to have a theoretical lifetime of 200 to 5,700 years. These results indicate that the synthetic fuels maintain their physical properties even after long-term storage at high temperatures, and the FKM O-ring is suitable for long-term sealing of these fuels.

메탄올 첨가에 따른 Ni 기반 합금의 트라이볼로지 특성 변화에 대한 실험적 연구 (Experimental Assessment of the Methanol Addition Effect on the Tribological Characteristics of Ni-based Alloy)

  • 최준민;박상문;김영준;김성훈;김혜민;박정언;유정원;이명규;이현우;정구현
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.49-55
    • /
    • 2023
  • Currently, the demand for green technologies toward a sustainable future is rapidly increasing due to growing concern over environmental issues. Methanol is biodegradable and can provide clean combustion to reduce sulfur oxide and nitrogen oxide emissions, and therefore it is a candidate fuel for marine engines. However, the effect of methanol on tribological characteristic degradation should be addressed for methanol-fueled engines. In this study, the methanol addition effects on tribological characteristic degradation is experimentally assessed using a pin-on-disk tribo-tester. Ni-based alloy is used as a target material due to its broad applicability as an engine component material. For a lubricant, engine oil with and without methanol are used. The tests are conducted for up to 10,000 cycles under boundary lubrication while the change in friction force is monitored. Additionally, the wear rate is determined based on laser scanning confocal microscope data. An additional test in which methanol is added at regular intervals is performed with an aim to directly observe its effect on friction. Overall, the friction coefficient increases slightly with increasing methanol concentration. Furthermore, the wear rate of the pin and disk increase significantly with methanol addition. The results also indicate that the friction increases instantaneously with methanol addition at the contacting interface. These findings may be useful for better understanding the methanol effect on the tribological characteristics of Ni-based alloys for methanol-fueled engines with improved performance.