• Title/Summary/Keyword: Lubricants oil

Search Result 458, Processing Time 0.03 seconds

A Study on Sealing Performance of Elastomeric Rotary Lip Seals for Washing Machines (세탁기용 고무 회전 씨일의 밀봉 성능에 관한 연구)

  • Kim, Tae-Hyung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.102-108
    • /
    • 2015
  • In this research, we experimentally investigated the sealing performance of elastomeric rotary lip seals for washing machines. In general, NBR is used as a material for elastomeric rotary lip seals in washing machines, but the mixing formula of the rubber material can affect the sealing performance. In this study, we manufactured rotary lip seals using three kinds of NBRs with a different mixing formula, and examined the sealing performance using an acceleration test mode. The results of an SEM investigation into the surfaces of three kinds of specimens showed a much smaller wear volume and better sealing performance for the specimens with smaller particle sizes of mixing composition than for the specimen with the larger. Repeated deformation and recovery by the shaft-to-seal eccentricity on rotation were shown to cause a phase difference in the rubber material, and we measured the recovery ratio to find the influence of this phase difference on the sealing performance. As another method for checking the phase difference, we also measured tan ä, and a lower tan ä was revealed as the recovery ratio increased for each specimen. Specimens with a higher recovery ratio (lower tan ä) were shown to have a better sealing performance. Consequently, specimens with a smaller particle size in the mixing composition had a better sealing performance because they show a higher recovery ratio.

Wear Characteristics of Polyolester Base Oils Baying different Branch Shapes(I) (서로 다른 모양의 가지사슬을 갖는 폴리올에스터 오일의 마모특성(I))

  • 한두희;마사부미마스꼬
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2001
  • The lubricating performance of 23 kinds of polyol ester base oils 〔POEs〕 having different branch shapes was investigated by using a four ball tribometer under boundary lubrication condition. All the polyol ester base oils used in this study were made up of polyhydric alcohols of two-four valence and normal or branched fatty acids of different carbon number. The wear characteristics of polyol ester base oils are different from those of mineral oil, strongly affected by the branch shapes of fatty acids in their molecles. In particular, the polyol ester base oils having normal fatty acids such as n-octanoic acid, n-nonanoic acid etc. show much better wear performance than POEs having branched fatty acids such as 2-ethylhexanoic acid, 3,5,5-trimethyl hexanoic acid, etc. As the carbon chain length of normal fatty acids, in case of POEs of normal fatty acids, is increased, their wear rate is decreased and, in case of POEs of branched fatty acids, as the degree of branch of branched fatty acids is decreased, their wear rate is decreased. All the wear results of polyol ester base oils could be reasonably explained by comparing cohesive ability among fatty acid molecules in adsorption film by fatty acids obtained as POEs were decomposed.

A Study on the Compression Characteristics of Bi-polymer O-rings (복합소재 O-링의 압축변형 특성에 관한 연구)

  • Kim, Do-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.171-176
    • /
    • 2005
  • O-ring seal is an essential component in various mechanical apparatuses for a sealing of oil container and pressure vessels. This paper presents the sealing pressure and compressive contact behaviors of hi-polymer O-rings, which is made by an outer shell of FFKM material and an inner solid ring of FKM one. The contact normal pressure and its ratios are measured by experimental method with an automatic control system of the working temperature and analyzed numerically by using the non-linear Marc FEM program. The results show reasonably good agreements between the computed FEM results and measured ones when the operating temperature is kom normal temperature of $18^{\circ}C$ and a high temperature of $300^{\circ}C$ But the compared values between the computed and tested results show a little difference because of the increased temperature, which is related to the non-linear parameter of the O-ring material. Bi-polymer 0-ring shows a good contact normal stress and compression behavior for a given operation temperature and compression ratio.

Implementation of a Small Size Electric Automatic Lubrication System for Heavy Commercial Vehicle (대형상용차량을 위한 소형전기식 윤활유 자동 공급시스템 구현)

  • Kim, Man Ho;Lee, Sang Hyeop;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1041-1049
    • /
    • 2013
  • One of the causes of malfunction of commercial vehicle is corrosion or wear. In order to prevent corrosion and wear, lubricants have to be supplied periodically. However, the period of lubrication usually depends on operator's judgment. If the period is too short, excess lubricant will cause pollution and unnecessary expenses, where as long periodic supply of lubricant might cause wear, damage and eventual breakdown. Therefore, an automatic lubrication system with predetermined interval will reduce the excessive supply of lubricating oil and prevent wear and damage. This thesis presents an automatic lubrication system which consists of a lubricant pump and an embedded controller. An automatic lubrication operating algorithm is used to operate the lubricant pump and feedback the pressure status of the system using pressure sensors. The developed system shows an efficient periodic supply of lubricant.

Friction Reduction with Oil-Soluble Organo-Molybdenum Compound and Environmental Effect (유용성 몰리브덴 화합물의 마찰감소 작용과 분위기효과)

  • 김영환
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2000
  • Factors influencing friction reduction with MODTP(molybdenum dialkyl dithiophosphate) lubricant were investigated through a frictioning experiment using two-cylinder edge surface frictioning tester and XPS surface analysis. The friction reduction effect gained with MoDTP lubricant appeared to be largely attributable to MoS$_2$ formation on the frictioning interface. Under N$_2$ atmosphere, Mo diffused into the metal substrate, easily escaping from MoS$_2$ so the friction reduction effect from MoDTP was not gained. However, when an oxide surface film was preliminary prepared on frictioning surface, this Mo diffusion to metal substrate from MoS$_2$ was effectively inhibited. Then desired lubulication effect of MoDTP was gained even under N$_2$atmosphere. As such, the existence of a surface oxide film on the frictioning surface was concluded to be of essential importance in order to gain a lubrcating effect with MoDTP.

Electrorheological Properties of Water Activated Silica Gel Suspensions (수분 활성 실리카 겔 분산계의 전기유변학적 특성)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.115-123
    • /
    • 1997
  • The electrorheological (ER) behavior of suspensions in silicone oil of silica gel powder (average particle size 49 $\mu$m) absorbed water was investigated at room temperature with electric fields up to 2.4 KV/mm. In this paper, for development of succcessful ER fluids used for wide temperature range later, we would like to know a fundamental understanding of water on ER effect. As a first step, the ER fluids involving water activated silica gel were measured not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on the strength of electric field, the quantity of dispersed phase and absorbed water. From the experimental results that water absorbed to the particles directly affects to the surface charge density of electric double layer model proposed by Schwarz and makes dielectric constant and current density of ER fluids increase. The current density and dynamic yield stress $($\tau$_y)$ of water activated silica gel suspensions was in exponential proportion to the strength of electric field, the quantity of dispersed phase and absorbed water. And the optimum water quantity and weight concentration of silica gel for electrorheological effect were 4-5 wt% and 15 wt%, respectively.

A Study on Models for the Analysis of Pressure Pulsation in a Swash-Plate Type Axial Piston Pump (사판식 액셜 피스톤 펌프에서의 압력맥동 해석모형에 관한 연구)

  • Shin, Jung-Hun;Kim, Hyoung-Eui;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.314-320
    • /
    • 2011
  • Although swash-plate type axial piston pumps have the merits of wide operating conditions and high efficiency, the characteristics of pressure pulsation and flow ripple which result in system noise generation are on-going problems. This research examined the analytic models of the dynamic oil pressure and flow characteristics in the pump. A new mathematical model which considered the pressure behaviors of each cylinder and discharge piping was developed to analyze the pump pressure and flow. This model also considered the leakages in the clearances which many researchers have ignored so far. Using the developed model, numerical calculations were implemented. The results showed that widely used simple model which considered only a single cylinder can not predict actual discrete flow dynamics and that fluid inertia effect has to be considered in the mathematical model. Several critical parameters were discussed such as port volume and discharge resistance on the assumption that the pipe length is not so long. The effect of leakages was studied on the final stage.

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part I : Bearing Performance Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part I : 베어링 성능해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.197-202
    • /
    • 2012
  • In this study, with the purpose of fundamentally improving the unbalance response vibration of a large PRT motor-generator rotor by design, a performance improvement design analysis is carried-out by retrofitting tilting pad bearings, replacing the plain partial journal bearings that were originally applied for operation at a rated speed of 1,800 rpm. In this process, a goal of the design analysis is to obtain a design solution for maximizing the direct stiffness of the bearings while satisfying the key basic lubrication performance requirements such as the minimum lift-off speed and maximum oil-film temperature. The results show that with a careful design application of tilting pad journal bearings for operation at such a relatively low speed of 1,800 rpm, direct stiffness increment of the bearings by about two times can be effectively achieved. Prevention of pad unloading is also considered in the analysis. Moreover, the designs of elliptical and offset half journal bearings are also analyzed and reviewed.

Improvement in Fatigue Life of Needle Roller Bearing (니들 롤러 베어링의 피로 수명 향상에 대한 연구)

  • Darisuren, S.;Amanov, A.;Pyun, Y.S.
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.237-243
    • /
    • 2019
  • Through this study, we investigate the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the fatigue life of needle roller bearings. The fatigue life of untreated and UNSM-treated needle roller bearings is evaluated using a roller fatigue tester at various contact stress levels under oil-lubricated conditions. We can ascertain that the fatigue life of an UNSM-treated needle roller bearing was extended by approximately 34.3% in comparison with an untreated one, where the effectiveness of UNSM technology diminishes with increasing contact stress. The surface roughness and surface hardness of needle roller bearings before and after being treated by UNSM technology are compared and discussed to understand the role of UNSM technology in improving the fatigue life of needle roller bearings. In addition, a fractograph of the damaged bearings is observed using a scanning electron microscopy to shed light on the fracture mechanisms of bearings under different contact stress levels. We can therefore conclude that the application of UNSM technology to the needle roller bearings improves the fatigue life by reducing the friction coefficient and increasing the wear resistance; this may be attributed to a reduction in surface roughness from 0.5 to $0.149{\mu}m$ and an increase in surface hardness from 58 to 62 HRc.

Performance of Tilting Pad Journal Bearings with Different Thermal Boundary Conditions (열 경계 조건이 다른 틸팅패드저널베어링의 성능)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.14-24
    • /
    • 2021
  • This study shows the effect of the thermal boundary condition around the tilting pad journal bearing on the static and dynamic characteristics of the bearing through a high-precision numerical model. In many cases, it is very difficult to predict or measure the exact thermal boundary conditions around bearings at the operating site of a turbomachine, not even in a laboratory. The purpose of this study is not to predict the thermal boundary conditions around the bearing, but to find out how the performance of the bearing changes under different thermal boundary conditions. Lubricating oil, bearing pads and shafts were modeled in three dimensions using the finite element method, and the heat transfer between these three elements and the resulting thermal deformation were considered. The Generalized Reynolds equation and three-dimensional energy equation that can take into account the viscosity change in the direction of the film thickness are connected and analyzed by the relationship between viscosity and temperature. The numerical model was written in in-house code using MATLAB, and a parallel processing algorithm was used to improve the analysis speed. Constant temperature and convection temperature conditions are used as the thermal boundary conditions. Notably, the conditions around the bearing pad, rather than the temperature boundary conditions around the shaft, have a greater influence on the performance changes of the bearing.