• Title/Summary/Keyword: Lubricants oil

Search Result 457, Processing Time 0.021 seconds

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.

A Study on the Lubricational Characteristics of the Oil-in-Water Emulsions (O/W Emulsion의 潤滑特性에 관한 연구)

  • Rhee, Bong-Goo;Ji, Chang-Heon;So, Byung-Un;Yu, Ki-Uk
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.51-56
    • /
    • 1989
  • The Lubricational characteristics of O/W Emulsions of beef tallow and mineral oil based lubricants are studied in a roller on disk apparatus. It is revealed that the coefficients of friction with both emulsion lubricants exhibit essentially similar behavior; that is, they rapidly decrease to 0.1% concentration and after they constants with increasing oil concentration, and that, with oil in water emulsions of a concentrations as low as 5wt% practically forms a elastohydrodynamic film. One hand, surface temperature effect on lubricants has virtually no severe, and that, the minimum EHL film chickness estimated that it begins to increase at a concentration of several percent; the effect of particle diameter becomes maked there after.

Role of FT-IR in Assessing Lubricant Degradation - A Study on Palm Oil Methyl Ester Blended Lubricant

  • Maleque, M.A.;Masjuki, H.H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.351-352
    • /
    • 2002
  • In this paper, studies were made on the palm oil methyl ester (POME) added lubricants using FT-IR for monitoring oil degradation. In order to assess the degradation characteristics of POME added lubricant by FT-IR, static oxidation test was conducted using three different blended lubricants (viz, zero percent POME, five percent POME and ten percent POME with mineral-based oil) for 280 hrs. The oxidation temperature was set at $140^{\circ}C$. FT-IR quantitative data indicate an increased in oxidation products which was formed from 10% POME added lubricants after 280 hrs of oxidation test. The 5% POME added lubricant and mineral-based lubricant (without POME) showed less oxidation product after the test. From the FT-IR spectrum analysis of the oxidized oils it could be concluded that 5% POME can improve the performance of mineral-based oil by forming protective films.

  • PDF

Effects of Tribological Characteristics on Lubricants Properties (The 2nd) (윤활유 성질이 마모특성에 미치는 영향(제2보))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.335-340
    • /
    • 2001
  • It was reviewed that the kinds of lubricating oil, viscosity, temperature and strength of materials affected the wear of the surface heat treatment. When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

Applications of High-Quality Base Oil to Specialty Lubricants

  • Moon, Woo-Sik
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • There have been significant improvements in base oil quality in order to satisfy recent market needs. In particular requirements of passenger car motor oils have been leading the trend. Now, high quality base oils such as VHVI base oils and PAOs are to be formulated in order to meet the tight volatility specifications. The severe hydrocracking, hydro-isomerized dewaxing and hydro-finishing process with noble-metal based catalysts (named UCO lube process) developed by SK corporation has been introduced as one of economic hydroprocessing routes to produce high quality VHVI base oils and food grade white mineral oils from fuels hydrocracker residue. Product quality of UCO lube process is similar to PAO in. general performances and therefore provides satisfactory performance far all straightforward applications in general lubricants. However, when applied to specialty lubricants like transformer oils, spray oils and coning oils, severely hydrocracked base oils are known to have various compatibility problems with gas or surfactants formulated in them. These problems are related to the difference in their composition; inherent high paraffin contents and lack of dissolving ability, Fortunately, it was found that excellent specialty lubricants could be made by carefully selecting and formulating adequate additives and/or aromatic compounds. Moreover, these specialties with high quality VHVI base oils ofter various advantages over conventional base oil based products.

Study on Lubrication Characteristics of Vegetable Oil Based on Blending Condition (식물성 오일의 혼합조건에 따른 윤활 특성 연구)

  • Jung, Hee-Young;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.342-349
    • /
    • 2020
  • The rapidly increasing threats to the environmental has increased the demand for biodegradable lubricants. Vegetable oils, such as olive, coconut, and sunflower oils, are readily obtainable and are not harmful, unlike synthetic and mineral oils. The tribological characteristics of these oils should be adequately examined for industrial applications. In this study, the lubrication characteristics of olive oil is investigated using a pin-on-disk-type tribometer under 500 gf of normal force, and the examination results are compared and analyzed with those of commercial synthetic lubricants for friction and wear. In addition, stearic acid, which is a type of saturated fatty acid, is mixed with olive oil as an additive to improve its lubrication characteristics. Olive oil with stearic acid additive is thus observed to exhibit the lowest friction coefficient for rotational speeds of 200 to 800 rpm. According to the wear analysis, a minimal amount of wear is observed when no additive is used. Hence, olive oil is able to effectively reduce friction and wear at relatively low speeds. These low friction and wear characteristics of olive oil are attributed to its compatibility with the substrate.

Chemical reconstruction of Castor Oil --Research of Environmentally Friendly Lubricants

  • Tao, De-Hua;Ye, Bin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.339-340
    • /
    • 2002
  • Natural castor oil was chemically reconstructed to extend the carbon chains by means of iso-reaction so as to improve the rheological behavior, by way of increasing the viscosity index and decreasing the pour point. The rheological and tribological characteristics of the reconstructed castor oil were comparatively investigated with those of the natural castor oil and several other vegetable oils and a mineral oil. The friction and wear test results on a four-ball machine indicate that the chemically reconstructed castor oil has considerably improved rheological and tribological properties as compared with the natural castor oil. It shows a greatly increase viscosity index and largely decreased pour point, which makes it applicable to low temperature lubrication. The chemically reconstructed castor oil even shows better tribological behavior than pentaerythritol ester or di-iso-capryl sebacate. However, it is still needed to increase the oxidation stability of the reconstructed castor oil.

  • PDF

Synthesis and Characteristics of Synthetic Lubricants for the Polyol ester derivatives (폴리올 에스테르 유도체에 대한 합성 윤활유의 제조 및 그의 특성)

  • Lee, Jae-Duk;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.213-223
    • /
    • 2009
  • Conventional additives were added to a newly synthesized base oil to create synthetic lubricants. Commercial polyol ester prepared in this laboratory were obtained as esterification of 1,1,1-trimethylol propane and respectively. This newly synthesized base oil had a variable chemical structure that could achieved the following properties; oxidation or thermal stability, low temperature fluidity, and higher flash points. When compared with commercial mineral lubricants, the synthetic lubricants show superior thermal and oxidation stability, and anti-wear properties.

Friction Assessment of Canola Oil on Contact Bearing Materials

  • Okechukwu, Nicholas Nnaemeka;Byun, JaeYoung;Kim, JongSoon;Park, JongMin;Kwon, SoonGoo;Chung, SungWon;Kwon, SoonHong;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • In manufacturing operations, oil plays a crucial role in reducing friction and wear among interacting surfaces at varying velocities, loads, and temperature. Hydrocarbon oil is considered the origin of lubrication oils. However, this base oil has been limited in its use as it is a principal cause of pollution. This research focuses on identifying a biodegradable base oil lubricant that possesses a stable coefficient of friction and viscosity with temperature. Friction analysis is conducted by employing a pin on a disk tribotester with a fixed load of 10 N at varying sliding speeds ranging from 0.06 m/s to 0.34 m/s. Oil viscosity analysis is perfomed at room temperature by using a rotary viscometer. Tests are performed using canola oil and paraffin oil as lubricants. The results indicate that the viscosity of canola oil is more efficient than paraffin oil. The non-dimensional characteristic number according to the Stribeck curve reveals an elastohydrodynamic lubrication regime with canola oil lubrication. A comparison of both lubricants reveals that, the friction efficiency of canola oil and paraffin oil does not differ considerably. However, the friction in canola oil is observed to decrease more than that in paraffin oil at an elevated sliding speed. The tests confirm that canola oil is potent in minimizing the friction coefficient of SCM440 bodies interacting with one another as well as acted upon by load.

Effects of Tribological Characteristics on Lubricants Properties (The 1st) (윤활유 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1998
  • When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied between 6$0^{\circ}C$ and 115$^{\circ}C$ while the oil viscosity was unchanged. It was shown from the test results that surface wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the wider the scratching of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.