• Title/Summary/Keyword: Lubricant Film

Search Result 163, Processing Time 0.027 seconds

Partial-EHL Analysis of Wheel Bearing for a Vehicle (자동차용 휠 베어링의 부분탄성유체윤활 해석)

  • Kim Dong-Won;Lee Sang-Don;Cho Yong-Joo
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.289-295
    • /
    • 2005
  • Most machine element, such as gears and bearings, are operated in the mixed lubrication region. Contact between two asperities has an effect on machine life by increasing local pressure. To estimate fatigue life exactly, asperity contact should be considered as a factor of fatigue life because this happening produce friction, abrasion and make flash temperature. In this paper, asperity contact is considered as a result of film breakdown when lubricant pressure is not enough to separate two asperities. Contact pressure is calculated to asperity overlap region and added to lubricant pressure. For this model, numerical procedure is introduced and the result on surface roughness and velocity for wheel bearing is presented. Results of EHL analysis for wheel bearing show that asperity contact is occurred at the edge ofEHL conjunction where has a insufficient lubricant pressure to separate two surface.

An Experimental Study on Thermal Characteristics of Journal Bearing (저어널 베어링의 온도 특성에 관한 실험적 연구)

  • 서태설;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.68-71
    • /
    • 1987
  • This paper deals with some thermal Characteristics of journal bearing such as the behaviour of the maximum bearing temperature, the lubricant's carry-over in the inlet region and so on. Temperatures of the bearing and the lubricants being supplied and discharged were measured along with shaft speed and bearing load. The results showed that with the increase of the Shaft speed, the maximum temperature rose at any shaft speed at a defferent rate of change defending on the flow regime of the lubricant film. And the lower eccentricity ratio is the more lubricant's carry-over occur. Additionally it was partially proved that the oil discharge temperature and the maximum temperature changed in quite different each other.

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

Analytical Study on Effects of Bearing Geometry on Performance of Sliding Thrust Bearings (미끄럼 스러스트베어링의 성능에 미치는 베어링 형상의 영향 해석)

  • Kim, Ho-Jong;Choi, Sung-Pil;Ha, Hyun-Cheon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.5 s.38
    • /
    • pp.7-13
    • /
    • 2006
  • In the present study, we develop an analysis module to be applicable to design of sliding thrust bearings. The pressure equation is solved by using the finite element method. Average lubricant temperature is obtained from using the energy balance method. The module developed has been applied to three types of thrust bearing, such as tapered-land thrust bearings of angular and diamond types, and tilting-pad thrust bearings. Effects of the dam of the tapered-lad thrust bearings have also been investigated. It has been seen that the tapered-land thrust bearings of angular type result in the highest load capacity, while the tilting pad thrust bearings result in the lowest lubricant temperature. It has also been seen that the dam in the tapered-land thrust bearings increases both the load capacity and lubricant temperature.

Partial-EHL Analysis of wheel Bearing (휠 베어링의 부분탄성유체윤활 해석)

  • Kim D.W.;Lee S.D.;Cho Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.616-621
    • /
    • 2005
  • Most machine element, such as gears and bearings, are operated in the mixed lubrication region. Contact between two asperities has an effect on machine life by increasing local pressure. To estimate fatigue lift exactly, asperity contact should be considered as a factor of fatigue liff because this happening produce friction, abrasion and make flash temperature. In this paper, asperity contact is considered as a result of film breakdown when lubricant pressure is not enough to separate two asperities. Contact pressure is calculated to asperity overlap region and added to lubricant pressure. For this model, numerical procedure is introduced and the result on surface roughness and velocity for wheel bearing is presented. Results of EHL analysis for wheel bearing show that asperity contact is occurred at the edge of EHL conjunction where has a insufficient lubricant pressure to separate two surface.

  • PDF

Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant (윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구)

  • Song, Chang Seok;Lee, Bora;Yu, YongHun;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

Effect of Lubricant with Nanodiamond Particles in Sliding Friction

  • Adzaman, M.H.;Rahman, A.;Lee, Y.Z.;Kim, S.S.
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.183-188
    • /
    • 2015
  • This paper presents the experimental effects of lubricant with nanodiamond particles in sliding friction. In order to improve the performance of lubricants many additives are used, such as MoS2, cadmium chloride, indium, sulfides, and phosphides. These additives are harmful to human health and to the environment, so alternatives are necessary. One such alternative is nanodiamond powder, which has a large surface area. In order to investigate the effect of nanodiamonds in lubricants under sliding friction, they are dispersed in the lubricant at a variety of concentrations (0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1 wt%) using the matrix synthesis method. Friction and wear tests are performed according to the ASTM G99 method using a pin-on-disc tester at room temperature. The specimens used in this experiment are AISI 52100 ball bearings and AISI 1020 steel discs. During the test, lubricant mixed with nanodiamond is supplied constantly to keep the two bodies separated by a lubricant film. To maintain boundary lubrication, the speed is set to 0.18 m/s and a load of 294 N is applied to the disc through the pin. Results are recorded by using workbench software over the test duration of 10 minutes. Experimental results show that when the concentration of nanodiamond increases, the coefficient of friction decreases. However, above a nanodiamond concentration of 0.5 wt%, both the coefficient of friction and wear volume increase. From this experiment, the optimum concentration of nanodiamond showing a minimum coefficient of friction of 0.09 and minimum wear volume of 0.82 nm2 was 0.5 wt%.

A Study on Wear Properties of Solid lubricating Greaphite Materials (고체윤활 Graphite 소재의 마모 특성에 관한 연구)

  • Yang, Hoyoung;Kim, Jaehoon;Kim, Yeonwook;Ha, Jaeseok;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2013
  • The important design factors for designing solid lubricating of dynamic seal are tightness, wear resistance and lubricant films. In this study, the effect factors influenced solid lubricating properties of the graphite were analyzed and wear behaviour caused for various test conditions was compared with results obtained from reciprocating wear tests. Also the optimal conditions for formation of lubricant films were investigate to evaluate wear properties of graphite materials. The repeated procedure for the formation of wear particles and lubricant films, and the dissipation of lubricant films was estimated the wear mechanisms with changes of wear depth. Therefore the lubricant film of graphite seal was generated by adhesion of wear particles on the worn surface and it was very useful in wear characteristics.

Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성)

  • Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.