• Title/Summary/Keyword: Low-viscosity composite resin

Search Result 35, Processing Time 0.03 seconds

SELF-ADHESION OF LOW-VISCOSITY COMPOSITES TO DENTIN SURFACE (상아질에 대한 저점도 복합레진의 자가접착에 관한 연구)

  • Cho, Tae-Hee;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.209-221
    • /
    • 2003
  • The objectiveness of this study was to evaluate whether low-viscosity composite can bond effectively to dentin surface without bonding resin. The low-viscosity composites being 50wt% filler content were made by the inclusion of bonding resin of two self-etching systems(Cleafil SE Bond, Unifil Bond) varied with contents as 0, 10, 20, 30, 40, 50wt%. Exposed dentin surfaces of extracted 3rd molars are used. Dentin bond strengths were measured. The tests were carried out with a micro-shear device placed testing machine at a CHS of 1mm/min after a low-viscosity composite was filled into an iris cut from micro tygon tubing with internal diameter approximately 0.8mm and height of 1.0mm. 1 Flexural strength and modulus was increased with the addition of bonding resin. 2. Micro-shear bond strength to dentin was improved according to content of bonding resin irrespective of applying or not bonding resin in bonding procedure, and that of Clearfil SE Bond groups was higher than Unifil Bond. 3. There were no significant difference whether use of each bonding resin in bonding procedure for S-40, S-50, U-50(p>0.05). 4. In SEM examination, resin was well infiltrated into dentin after primed with self-etching primer only for S-50 and U-50 in spite of the formation of thinner hybrid layer. Low viscosity composite including some functional monomer may be used as dentin bonding resin without an intermediary bonding agent. It makes a simplified bonding procedure and foresees the possibility of self-adhesive restorative material.

Effect of flowable resin composite on bond strength to wedge shaped cavity walls.

  • Ogata, M.;Pereira, PNR.;Harada, N.;Nakajima, M.;Nikaida, T.;Tagami, J.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.558.1-558
    • /
    • 2001
  • Flowable resin composite is a relatively new restorative material. It has been reported that a low viscosity, low modulus intermediate resin applied between the bonding agent and restorative resin act as an "elastic buffer" that can relieve contraction stress. This in-vitro study aimed to evaluate the effect of flowable composite resin as a restorative material on regional tensile bond stredgth to cervical wedge shaped cavity walls. (omitted)

  • PDF

Characteristics of Polymeric Dental Restorative Composites Fabricated from Bis-GMA Derivatives Having Low Viscosity (저점도 Bis-GMA 유도체로부터 제조된 고분자계 치과 수복용 복합재의 특성)

  • Jeon, Mi-Young;Song, Jeong-Oh;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.491-496
    • /
    • 2007
  • In the polymeric dental restorative composites, the resin matrix mainly contains 70 wt% 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA), as a base resin and 30 wt% triethylene glycol dimethacrylate (TEGDMA) as a diluent. Even though the viscosity of the resin matrix is rapidly decreased by adding TEGDMA, addition of TEGDMA to the Bis-GMA results in reduction in the mechanical properties and increase in the curing shrinkage of the dental composite. In order to fabricate dental composite exhibiting excellent properties by reducing TEGDMA content in the resin matrix, in this study, Bis-GMA derivatives, which do not contain hydroxyl groups, were used instead of Bis-GMA. The curing characteristics of Bis-GMA derivatives were similar with those of Bis-GMA, while the former exhibited lower viscosity and water absorption than the latter. Comparing the curing shrinkage of the dental composite containing Bis-GMA derivative with that prepared from Bis-GMA, the reduction in curing shrinkage was about 25%. Dental composites prepared from new resin matrices also exhibited low water uptake and better properties in mechanical strength.

The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites (Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

EFFECT OF AN INTERMEDIATE BONDING RESIN AND FLOWABLE RESIN ON THE COMPATIBILITY OF TWO-STEP TOTAL ETCHING ADHESIVES WITH A SELF-CURING COMPOSITE RESIN (자가 중합 복합 레진과 두 단계 산 부식 접착제의 친화성에 대한 중간 접착제와 흐름성 레진의 효과)

  • Choi, Sook-Kyung;Yum, Ji-Wan;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.397-405
    • /
    • 2009
  • This study compared the effect of an activator, intermediate bonding resin and low-viscosity flowable resin on the microtensile bond strength of a self-curing composite resin used with two-step total etching adhesives. Twenty extracted permanent molars were used. The teeth were assigned randomly to nine groups (n=10) according to the adhesive system and application of additional methods (activator, intermediate adhesive, flowable resin). The bonding agents and additional applications of each group were applied to the dentin surfaces. Self-curing composite resin buildups were made for each tooth to form a core, 5mm in height. The restored teeth were then stored in distilled water at room temperature for 24h before sectioning. The microtensile bond strength of all specimens was examined. The data was analyzed statistically by one-way ANOVA and a Scheffe's test. The application of an intermediate bonding resin (Optibond FL adhesive) and low-viscosity flowable resin (Tetric N-flow) produced higher bond strength than that with the activator in all groups. Regardless of the method selected, Optibond solo plus produced the lowest ${\mu}TBS$ to dentin. The failure modes of the tested dentin bonding agents were mostly adhesive failure but there were some cases showed cohesive failure in the resin.

Color evaluation of low viscosity bulk-fill resin with composite resin capping layer (저점도 벌크필레진과 복합레진 적층수복물의 색조 평가)

  • Yun, Jonghyeon;Jung, Ji-Hye;Chang, Hoon-Sang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.294-300
    • /
    • 2015
  • Purpose: The purpose of this study was to measure the color of low viscosity bulk-fill resin with a capping layer and to compare it with the color of microhybrid composite resin. Materials and Methods: A low viscosity bulk-fill resin (SDR) and microhybrid composite resin of shade A2 (A2) or A3 (A3) were fabricated to 4 mm thickness and light cured for 20 seconds. CIE $L^*a^*b^*$ values of the resin specimens were measured with a colorimeter. Then shade A2 and A3 microhybrid composite resin was capped over low viscosity bulk-fill resins in 2 mm thickness (SA2, SA3). The resin specimens were light cured for 20 seconds and the color was measured and analyzed (n = 10). Color differences (${\Delta}E$) between SA2 and A2, SA3 and A3 were also calculated. Results: $L^*$ value was highest in SDR followed by SA2 and SA3. $L^*$ value of A2 and A3 was the lowest. $a^*$ value was lowest in SDR followed by SA2 and SA3, and A2 and A3 was the highest. $b^*$ value was lowest in SDR followed by A2 and SA2, and A3 and SA3 was the highest. ${\Delta}E$ between A2 and SA2 (${\Delta}E=3.4$), and that between A3 and SA3 (${\Delta}E=3.1$) was lower than the perceptible color difference threshold of ${\Delta}E=3.7$. Conclusion: ${\Delta}E$ between low viscosity bulk-fill resin with a capping layer and microhybrid resin was lower than the perceptible color difference threshold.

THE EFFECT OF LOW-VISCOSITY RESIN SYSTEMS OM MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATIONS (Low-viscosity Resin Sysem이 복합레진 수복물의 변연누출에 미치는 영향)

  • Yang, Jeong-Suk;Kim, Mun-Hyoun;Her, Sun;Kim, Jae-Gon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.460-474
    • /
    • 1997
  • The purpose of this study was to evaluate and compare the effectiveness of various low-viscosity resin systems used as rebonding agents to prevent microleakage at the margins of class I composite resin restorations. Seventy sound human premolars were selected for experiment. Class I cavities were prepared and each cavity was conditioned with a 37% phosphoric acid for 15 sec, rinsed with water for 15 sec, and dried with compressed air. Bonding agent(Scotchbond Multipurpose, 3M Co.) was applied and a hybrid composite resin (Z-100, 3M Co.) was placed using an incremental technic. The excess cured composite resin was carefully removed with Sof-Lex discs(3M Co.) to expose the original margins of the cavity. The following seven groups were established : group 1 was not rebonded and used as control group ; group 2 was rebonded with a Scotchbond Multipurpose(3M Co.) and finished ; group 3 was rebonded with a Fortify(BISCO) and finished ; group 4 was rebonded with a Concise white sealant(3M Co.) and finished ; group 5 was rebonded with a Concise white sealant(3M Co.) and not finished ; group 6 was rebonded with a P&F sealant(BISCO) and finished; group 7 was rebonded with a P&F sealant(BISCO) and not finished. The specimens were then subjected to 500 thermocycles between 5 & 65 with a 10 see dwell time and immersed in 2% methylene blue dye solution for 24 hours and sectioned with low-speed diamond cutter into two part under water condition. The extent of microleakage at rebonded margins was evaluated microscopically and scored for dye penetration according to the following scale : 0=no dye penetration ; 1=dye penetration to half-way along axial wall between enamel surface and DEJ ; 2=dye penetration beyond halfway along axial wall between enamel surface and DEJ ; 3=dye penetration to the full depth of DEJ or beyond DEJ. Selected samples were prepared for SEM observation to determine the depth of penetration of the rebonding agent into the marginal interface. The obtained results were as follows: 1. In the group 2 and 3, which is rebonded with a Scotchbond Multipupose and Fortify, dye penetration score were decreased significantly than that of group 1 (P<0.05), but group 4 and 6 were not statistically different from group 1(P>0.05). 2. There were significant differences between group 4, 6 and group 5, 7 when compared by dye penetration score (P<0.05). 3. In the SEM observation, Scotchbond Multipurpose and Fortify were penetrated within $30-40{\mu}m$ depth of the outermost surface. However, both sealants were failed to penetrate into the debonded interface.

  • PDF

Development of Phenolic SMC for The Rail (철도차량 및 지하철 불연 내장재 페놀 SMC 개발)

  • Kim Young-keun;Shin Dong-hyok;Kim Young-min;Park Joung-wuk;Min Jae-Jun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.55-58
    • /
    • 2004
  • Phenolin resin, prepared form phenol and formaldehyde, is one of the oldest thermosetting resins available. Phenolic resins are cured via condensation polymerization with evolution of water, which in molding process is a big problem. The use of phenolic resins in glass fiber composites is growing, primarily due to their low flame spread, low smoke generation and low smoke toxicity properties. SMC of phenolics has been rearched since the 1986. The technology challenge was to match resin viscosity, handling and cure with those for the polyester SMC to avoid any special processing for fabricators and end users. Phenolic SMC was chosen because of the ease of molding to the required shape with light- weight, thin wall structure and with excellent fire protection.

  • PDF

EFFECT OF A NEW RESIN MONOMER ON THE MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS (새로운 레진 단량체가 복합레진수복물의 미세변연누출에 미치는 영향)

  • Bae, J.H.;Kim, Y.K.;Yoon, P.Y.;Lee, M.A.;Cho, B.H.
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.469-475
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of a new resin monomer on the microleakage of composite resin restorations. By adding new methoxylated Bis-GMA (Bis-M-GMA, 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane) having low viscosity, the content of TEGDMA which has adverse effects on polymerization shrinkage might be decreased. As a result, microleakage might be improved. $2\;mm\;{\times}\;2\;mm\;{\times}\;2\;mm$ cavities with occlusal margins in enamel and gingival margins in dentin were prepared on buccal and lingual surfaces of 40 extracted human premolars. Prepared teeth were randomly divided into four groups and restored with Clearfil SE bond (Kuraray, Japan) and one of experimental composite resins; EX1, Experimental composite resin1 (Bis-M-GMA/TEGDMA = 95/5 wt%, 40 mm nanofillers); EX2, Experimental composite resin2 (Bis-M-GMA/TEGDMA = 95/5 wt%, 20 mm nanofillers); EX3, Experimental composite resin3 (Bis-GMA/TEGDMA = 70/30 wt%, 40 nm nanofillers); and Filtek Z250 (3M ESPE, USA) was filed as a control group. The restored teeth were thermocycled, and immersed in 2% methylene blue solution for 24 hours. The teeth were sectioned buccolingually with a low speed diamond saw and evaluated for microleakage under stereomicroscope. The data were statistically analyzed by Pearson Chi-Square test and Fisher Exact test (p = 0.05). The microleakage scores seen at the enamel margin were significantly lower than those of dentin margin (p = 0.007). There were no significant differences among the composite resins in the microleakage scores within each margin (p > 0.05). Bis-M-GMA, a new resin monomer having low viscosity, might in part replace high viscous Bis-CMA and might improve the quality of composite resin.

Flexural Rigidity of MMA-Modified Fiberglass Reinforced Plastic Composite Pipe (MMA 개질 강화 플라스틱 복합관의 휨강성)

  • 연규석;최종윤;백종만;권택정;정중호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.429-432
    • /
    • 2003
  • MMA-modified fiberglass-reinforced plastic composite pipe was produced by using the binder of MMA-modified unsaturated polyester resin in which low viscosity MMA was added to unsaturated polyester resin. Sixteen specimens were made of polymer mortar and fiberglass-reinforced plastic by the centrifugal method. For these specimens the external strength tests were carried out by taking the core thickness consisting of polymer mortar and the fiberglass content per unit area as experimental variables to figure out the effect of variations of these variables influencing on flexural rigidity that is an important property for the composite pipe. Results of this study are believed to provide the basic data for more economical and practical design of MMA-modified fiberglass-reinforced plastic composite pipe.

  • PDF