• Title/Summary/Keyword: Low-temperature activity

Search Result 902, Processing Time 0.028 seconds

Chilling Tolerance of Photosynthesis in Plants is Dependent on the Capacity to Enhance the Levels of the Xanthophyll Cycle Pigments in Response to Cold Stress

  • Kim, Hyun-Ju;Kang, In-Soon;Lee, Chin-Bum;Lee, Choon-Hwan;Cho, Sung-Ho;Moon, Byoung-Yong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Plants possess the ability to dissipate the excitation energy for the protection of photosynthetic apparatus from absorbed excess light. Heat dissipation is regulated by xanthophyll cycle in thylakoid membranes of chloroplasts. We investigated the mechanistic aspects of xanthophyll cycle-dependent photoprotection against low-temperature photoinhibition in plants. Using barley and rice as chilling-resistant species and sensitive ones, respectively, chilling-induced chlorophyll fluorescence quenching, composition of xanthophyll cycle pigments and mRNA expression of the zeaxanthin epoxidase were examined. Chilled barley plants exhibited little changes in chlorophyll fluorescence quenching either of photochemical or non-photochemical nature and in the photosynthetic electron transport, indicating low reduction state of PS II primary electron acceptor. In contrast to the barley, chilled rice showed a marked decline in those parameters mentioned above, indicating the increased reduction state of PS II primary electron acceptor. In addition, barley plants were shown to have a higher capacity to elevate the pool size of xanthophyll cycle pigments in response to cold stress compared to rice plants. Such species-dependent regulation of xanthophyll cycle activity was correlated with the gene expression level of cold-induced zeaxanthin epoxidase. Chilled rice plants depressed the gene expression of zeaxanthin epoxidase, whereas barley increased its expression in response to cold stress. We suggest that chilling-induced alterations in the pool size of xanthophyll cycle pigments related to its capacity would play an important role in regulating plant's sensitivity to chilling stress.

  • PDF

Effect of cryopreservation of ginseng (Panax ginseng C.A. Meyer) seeds on redox ratio of ascorbate and glutathione (인삼종자 초저온보존 후 Ascorbate 및 Glutathione의 산화환원 변화)

  • Baek, Hyung-Jin;Lee, Young-yi;Yoon, Mun-Seop;Song, Jae-young;Balaraju, Kotnala
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.81-81
    • /
    • 2019
  • Ginseng seeds are one of short-lived seeds species which loose their viability easily in the condition of conventional storage. Cryopreservation using liquid nitrogen (LN) has been recommended as a alternative storage for this kind of germplasm short lived or dessiccation-sensitive. This study was performed to find out whether cryopreservation could affect physiological change such as enzyme activity induced by reactive oxygen species. In this work, the redox ratio of ascorbate and glutathione were examined onto ginseng seedlings before and after LN storage of seeds for 1 day using spectrophotometer method. Reduced ascorbate (ASA) was increased while oxidized ascorbate (DHA) was decreased slightly for both after 1d-LN storage. And for glutathione also, reduced form (GSH) was increased while oxidized form (GSSG) was decreased slightly for both after 1d-LN storage. Consequently total phenol compound and ion leakage after LN storage showed no significant differences. Additionally root growth from the seeds after LN storage was not affected by ultra low temperature. From the above results, we may suggest that cryopreservation could be recommended for storage tool of ginseng seeds even with low viability also and expected to make slower seed aging process during preservation period through further study.

  • PDF

Purification and Characterization of $\beta$-Xylosidase B of Bacillus stearothemophilus No.236 Produced by Recombinant Escherichia coli. (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus No.236 $\beta$-Xylosidase B의 정제 및 특성)

  • 장욱진;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.297-302
    • /
    • 1998
  • $\beta$-Xylosidase B was produced by Escherichia coli HB101/pKMG12 carrying the xylB gene of Bacillus stearothermophilus No.236 on its recombinant plasmid. The $\beta$-xylosidase B produced was purified by ammonium sulfate fractionation, DEAE-Sepharose CL-6B, Sephacryl S-200 and Superdex 200 HR gel filtration. The purified enzyme showed the highest activity at pH 6.5 and 5$0^{\circ}C$. But, the enzyme was observed to be very sensitive to the pH and temperature of the reaction mixture. The enzyme was activated about 35% of its original activity in the presence of 1 mM of $Mn^{2+}$ but it was completely inhibited by $Ag^{+}$, $Cu^{2+}$and $Hg^{2+}$ions. In contrast with the $\beta$-xylosidase A, the B enzyme was found to have $\alpha$-arabinofuranosidase activity though the activity was fairly low compared with the $\alpha$-arabinofuranosidase produced from the arfI gene of the same Bacillus stearothermophilus. Therefore, $\beta$-xylosidase B is considered to be more suitable than $\beta$-xylosidase A at least for the biodegradation of arabinoxylan. The $K_{m}$ and V$_{max}$ values of the $\beta$-xylosidase B for o-nitrophenyl-$\alpha$-D-xylopyranoside were 6.43 mM and 1.45 $\mu$mole/min, respectively. Molecular mass of the enzyme was determind to be about 54 kDa by SDS-PAGE and 160 kDa by Superdex 200HR gel filtration, indicating that the functional $\beta$-xylosidase B was composed of three identical subunits.s.

  • PDF

Characterization of Bacteria Isolated from Rotted Onions (Allium cepa) (양파 부패병변에서 분리한 세균의 특성)

  • Lee Chan-Jung;Lim Si-Kyu;Kim Byung-Chun;Park Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • One hundred thirty nine bacteria were isolated from rotten onions collected from main producing districts, Chang-Nyung, Eui-Ryung, and Ham-Yang in Korea. The $18\%$ (25 strains) of bacterial isolates have carboxymethylcellulase (CMCase) activity and the $53\%$ (74 strains) have polygalacturonase (PGase) activity. Thirty one among randomly selected 45 strains of PGase producing bacteria have pathogenicity to onions. The isolates were classified into Pseudomonas sp. (18 strains), Bacillus sp. (11 strains), Yers-inia sp. (7 strains), and others (9 strains) on the basis of FAMEs patterns. Eighteen strains of Pseudomonas sp. were mainly divided into three cluster in the dendrogram and only the two clusters of them showed pathogenicity to onions. CMCase and PGase activities of Pseudomonas sp. weaker than those of Bacillus sp.. However, the pathogenicity of pseudomonas sp. to soften onions was stronger than that of Bacillus sp. Inoculation of $10^{2}$ cfu of Pseudomonas sp. gives rise to softening of onions. Pseudomonas sp. was identified as Pseudomonas gladioli by biochemical and physiological characteristics. P. gladioli is the first reported bacterium as a pathogen of onion in Korea. In low temperature, P. gladioli showed better growth and higher PGase activity than those of Bacillus sp. identified as Bacillus subtilis. And pH 9.0 is optimal pH for PGase activity of B. subtilis while that of P. gladioli is pH $5.0\∼6.0$ which is the acidity of onions. Taken together, P. gladioli may be a main pathogene of onion rot during the cold storage condition.

Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production

  • Zheng, Hong-Chen;Sun, Ming-Zhe;Meng, Ling-Cai;Pei, Hai-Sheng;Zhang, Xiu-Qing;Yan, Zheng;Zeng, Wen-Hui;Zhang, Jing-Sheng;Hu, Jin-Rong;Lu, Fu-Ping;Sun, Jun-She
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.489-496
    • /
    • 2014
  • High levels of extracellular xylanase activity (211.79 IU/mg) produced by Paenibacillus sp. NF1 were detected when it was submerged-cultured. After three consecutive purification steps using Octyl-Sepharose, Sephadex G75, and Q-Sepharose columns, a thermostable xylanase (XynNF) was purified to homogeneity and showed a molecular mass of 37 kDa according to SDS-PAGE. The specific activity of the purified XynNF was up to 3,081.05 IU/mg with a 14.55-fold purification. The activity of XynNF was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Fe^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, SDS, and EDTA. The purified XynNF displayed a greater affinity for oat spelt xylan with the maximal enzymatic activity at $60^{\circ}C$ and pH 6.0. XynNF, which was shown to be cellulose-free, with high stability at high temperature ($70^{\circ}C-80^{\circ}C$) and low pH range (pH 4.0-7.0), is potentially valuable for various industrial applications. The enzyme hydrolyzed oat spelt xylan to yield mainly xylooligosaccharides (95.8%) of 2-4 degree of polymerization (DP2-4). Moreover, the majority of the xylooligosacharides (DP2-4) products was xylobiose (61.5%). The thermostable xylanase (XynNF) thus seems potentially usefull in the production of xylooligosaccharides.

Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7

  • Seo, Ju Won;Tsevelkhorloo, Maral;Lee, Chang-Ro;Kim, Sang Hoon;Kang, Dae-Kyung;Asghar, Sajida;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1659-1669
    • /
    • 2020
  • 1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-L-galactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium Gayadomonas joobiniege G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase ZgAhgA, from Zobellia galactanivorans, but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from Escherichia coli, was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6-anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20℃, respectively. In particular, rAhg943 could maintain enzyme activity at 10℃ (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca2+ ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. Km and Vmax of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.

SCR Reaction Activity and SO2 Durability Enhancement in Accordance with Manufacturing Conditions of the V/TiO2 Catalysts (V/TiO2 촉매의 제조조건에 따른 SCR 반응활성 및 SO2 내구성 증진에 대한 연구)

  • Lee, Seung Hyun;Seo, Jeong Uk;Byeon, Sang Geun;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • In this studies, SCR reaction activity and SO2 durability enhancement study on manufacturing conditions of the V/TiO2 catalyst was carried out for the removal of nitrogen oxides generated in the combustion furnace. The catalysts are characterized by XPS, Raman, H2-TPR and SO2-TPD. When the vanadium was contained of 2 wt%, it showed excellent SO2 durability and catalytic activity. and When the tungsten is added as a promotor, the enhancement of reducing ability at a low temperature and reduction of SO2 adsorption capacity improved the reaction activity and SO2 durability. V/W/TiO2 are prepared by the lower pH of vanadium solution, vanadium was highly dispersed on the surface and inhibited the formation of crystalline V2O5. in addition, it was confirmed that this catalyst can be used as excellent resistance to high concentration of CO in the combustion furnace.

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.

Analysis of nutrients and antioxidants of sterilized and non-heat-pressed perilla oil (살균 및 비가열압착한 들깨오일의 영양성분 및 항산화 분석)

  • Kim, Yang-Hee;Chang, Ji-Hwe;Ha, Seo-Yeong;Park, Su-Jin;Park, Seon-Young;Jung, Tae-Hwan;Hwang, Hyo-Jeong;Shin, Kyung-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.264-271
    • /
    • 2022
  • In this study, the nutritional properties of sterilized and non-heat-pressed raw perilla oil (SRPO) were studied and its potential as a functional food was evaluated. The copper, cobalt, and calcium levels were high in sterilized and SRPO. The total polyphenol content and ABTS radical scavenging activity were the highest in SRPO, whereas nitrite scavenging activity was the highest in 45℃ cold pressed perilla oil (CPPO). The above results confirmed that sterilized and non-heat-pressed perilla oil had high mineral and total polyphenol contents, as well as ABTS radical scavenging activity and nitrite scavenging ability. The peroxide value of SRPO decreased as the storage period increased, and the acid value of low-temperature pressed perilla oil over 65℃ (LPPO) significantly increased. This work also provided an opportunity to develop a new method for manufacturing perilla oil, and it is hoped that these experiments will form a basis for the commercialization of perilla oil.

Preparation and Characterization of Porous Catalyst for Formaldehyde Removal using Domestic Low-grade Silica (국내산 저품위 실리카를 이용한 포름알데히드 제거용 다공성 촉매의 제조 및 특성)

  • Han, Yosep;Jeon, Ho-Seok;Kim, Seongmin
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • This study investigated formaldehyde (HCHO) removal by preparing porous supports using domestic low-grade silica coated with Co-ZSM5 and Cu-ZSM5 as the catalysts. First, the sample of the raw material for the support contained 90% silica with quartz crystal phase, which was confirmed as low-grade silica. According to Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses, the catalysts, Co-ZSM5 and Cu-ZSM5, were successfully coated on the surface of the porous silica supports. During the removal test of HCHO using the prepared Co-ZSM5 and Cu-ZSM5 coated beads, depending on the reaction temperature, the Co-ZSM5 coated beads exhibited higher removal efficiencies (>97%) than the Cu-ZSM5 beads at 200 ℃. The higher efficiency of the Co-ZSM5 coating may be attributed to its superior surface activity properties (BET surface area and pore volume) that lead to the favorable HCHO decomposition. Therefore, Co-ZSM5 was determined to be the suitable catalyst for removing HCHO as a coating on a porous support fabricated using domestic low-grade silica.