• Title/Summary/Keyword: Low-temperature activity

Search Result 898, Processing Time 0.04 seconds

Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice

  • Yoon, Ji-Woo;Ahn, Sung-Il;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.162-176
    • /
    • 2019
  • This study was performed to evaluate the antioxidant activity of yogurt fermented at low temperature and the anti-inflammatory effect it has on induced colitis with 2.5% dextran sodium sulfate (DSS) in Balb/c mice. Yogurt premix were fermented with a commercial starter culture containing Lactobacillus acidophilus, Bifidobacterium lactis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus at different temperatures: $22^{\circ}C$ (low fermentation temperature) for 27 h and $37^{\circ}C$ (general fermentation temperature) for 12 h. To measure antioxidant activity of yogurt samples, DPPH, $ABTS^+$ and ferric reducing antioxidant potential (FRAP) assays were conducted. For animal experiments, inflammation was induced with 2.5% DSS in Balb/c mice. Yogurt fermented at low temperature showed higher antioxidant activity than that of the yogurt fermented at general temperature. In the inflammatory study, IL-6 (interleukin 6) was decreased and IL-4 and IL-10 increased significantly in DSS group with yogurt fermented at general temperature (DYG) and that with yogurt fermented at low temperature (DYL) compared to that in DSS-induced colitic mice (DC), especially DYL had higher concentration of cytokines IL-4, and IL-10 than DYG. MPO (myeloperoxidase) tended to decrease more in treatments with yogurt than DC. Additionally, yogurt fermented at low temperature had anti-inflammatory activity, although there was no significant difference with general temperature-fermented yogurt (p>0.05).

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun;Kim Tae-Yun;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1093-1102
    • /
    • 2005
  • Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.

Biochemical Adaptation of Pinus pumila on Low Temperature in Mt. Seorak, Korea

  • Kim Chan-Soo;Han Sim-Hee;Lee Wi-Young;Lee Jae-Cheon;Park Young-Ki;Oh Chang-Young
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • We tested the hypothesis that alpine plants have special physiological and biochemical mechanisms in addition to their structural adaptation in order to survive under extreme conditions. The photosynthetic organs of Pinus pumila were used to examine the seasonal changes in sugar concentration, antioxidative enzyme, and lipid peroxidation. The concentrations of sucrose, glucose, fructose and reducing sugar were the highest in the leaves in April. But sugar contents in buds and inner barks did not respond sensitively on temperature change. Meanwhile superoxide dismutase (SOD) activity responded sensitively on the change of temperature and SOD in all tissues maintained high activity in April. Meanwhile anthocyanin content increased rapidly in June but the increase of anthocyanin content was not enough to prevent their tissues from the damage by the exposure of high temperature or other stress. In conclusion, under low temperature condition, P. pumila increased the concentration of soluble sugars and SOD activity in their tissues in order to overcome extreme environmental condition. But in summer, these stress defense system against high temperature might be disturbed slightly. This results in the increase of malondialdehyde (MDA) contents in three tissues by lipid peroxidation.

  • PDF

Changes in the body temperature of Proprioceptive activity by external stimulation

  • Kim, Eun-Sung;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.827-831
    • /
    • 2005
  • Acupuncture and Low-frequency-wave stimulation at the Points (LI4, LI6, LI8 and LI11) on the large intestine meridian of hand resulted in same pattern about body temperature profiles with time. Upon 4Hz and 50Hz stimulation the temperature profiles on LI6 and LI11 were declined probably because of their relationship with Proprioceptive activity. Temperature different at the points was higher when the intensity of low-frequency-wave stimulation was stronger.

  • PDF

A Study on the Effect of Low-Temperature Activity on Vanadium Catalysts (Vanadium계 촉매의 NH3-SCR 저온 활성 영향 연구)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • This experiment compared V/W/TiO2 and V/Mo/TiO2 catalysts that were used for commercial catalysts. The effects of SCR reactions on low-temperature activity were studied. NH3-TPD, DRIFT, and H2-TPR analysis, alongside O2-on/off experiments, were conducted to identify the effects of NH3 acid sites and oxygen participating in the SCR reaction, which had a significant impact on the NH3-SCR reaction. The effect on activity was analyzed at 250 ℃, a high temperature of reaction activity, and 180 ℃, which showed significant activity degradation. In NH3 involved in the SCR reaction at 250 ℃, B and L acid sites contributed to the reaction. In particular, the B acid site was found to have significantly participated in the reaction and affected the NH3-SCR activity, which was reduced at 180 ℃ to affect the activity degradation. Also, atmospheric oxygen contributed to the SCR reaction, causing the active property to facilitate reaction activity at 250 ℃. However, oxygen did not comprise the reaction at 180 ℃, indicating a drop inactivity. Therefore, the B acid site was reduced, and the activity was judged to be degraded due to failure to share in the reaction and low effects by atmospheric oxygen.

Characteristics of Growth and Physiological Changes during Cold Treatment in Dormant Hanabusaya asiatica

  • Lee, Ho-Sun;Yoo, Dong-Lim;Ryu, Seung-Yeol;Sung, Jeong-Suk;Baek, Hyung-Jin;Lee, Young-Yi;Lee, Sok-Young
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.292-297
    • /
    • 2011
  • This experiment was carried out to investigate the appropriate chilling requirements for breaking dormancy by treating the dormant plant of Hanabusaya asiatica with low temperature ($4^{\circ}C$) for different time periods. The rates of sprouting and flowering were higher with longer treatment periods at low temperature. In addition, the growth and flowering of the plant were better when it was potted after treatment at a low temperature for 90 days. The abscisic acid levels and polyphenoloxidase activity of the dormant plant increased during the low temperature treatment, reached a climax 90 days and decreased thereafter. The catalase activity was the lowest after the low temperature treatment for 90 days and increased subsequently. The peroxidase activity increased and showed a sharp rise after the low temperature treatment for more than 90 days. Considering the physiological activities of the enzymes, the changes in the abscisic acid levels, and the characteristics of growth and flowering after sprouting of the plant, the appropriate cold periods required for breaking dormancy could be 90 days.

Changes in antioxidant activity of processed edible mushrooms stored at room temperature and low temperature (주요 식용버섯 가공원료의 상온 및 저온 저장에 따른 항산화 활성 변화)

  • An, Gi-Hong;Han, Jae-Gu;Kim, Ok-Tae;Cho, Jae-Han
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • This study investigated the changes in the antioxidant activity, nitrite scavenging activity, and ��-glucan content of processed raw materials (Pleurotus eryngii, Pleurotus ostreatus, Lentinula edodes, and Flammulina velutipes) brought about by storage at room temperature (20-25℃) and low temperature (4℃). The results indicated that DPPH free radical scavenging activity was the lowest in air-dried and roasted samples that were stored at room temperature, k with the exception of the air-dried samples of P. eryngii and L. edodes. For total polyphenol contents, all roasted samples of the edible mushrooms stored at room and low temperature decreased compared with the samples pre-storage, except for the air-dried samples of P. eryngii, P. ostreatus, and L. edodes. Furthermore, the ferric reducing antioxidant power and reducing power of the air-dried and roasted samples stored at room temperature and low temperature tended to increase compared to that before storage. Moreover, the ��-glucan content in the air-dried and roasted samples stored at room temperature was significantly lower compared to that before storage, as well as to that in the samples stored at low temperature (p<0.05). The results of this study may help predict the degree to which biological activities in processed edible mushrooms change when stored at room temperature and/or low temperature conditions.

Novel Low-Temperature-Active Phytase from Erwinia carotovora var. carotovota ACCC 10276

  • Huang, Huoqing;Luo, Huiying;Wang, Yaru;Fu, Dawei;Shao, Na;Yang, Peilong;Meng, Kun;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1085-1091
    • /
    • 2009
  • A phytase with high activity at low temperatures has great potential for feed applications, especially in aquaculture. Therefore, this study used a degenerate PCR and TAIL PCR to clone a phytase gene from Erwinia carotovora var. carotovota, the cause of soft rot of vegetables in the ground or during cold storage. The full-length 2.5-kb fragment included an open reading frame of 1,302 bp and encoded a putative phytase of 45.3 kDa with a 50% amino acid identity to the Klebsiella pneumoniae phytase. The phytase contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. The enzyme was expressed in Escherichia coli, purified, and displayed the following characteristics: a high catalytic activity at low temperatures (retaining over 24% activity at $5^{\circ}C$) and remarkably thermal lability (losing >96% activity after incubation at $60^{\circ}C$ for 2 min). The optimal phytase activity occurred at pH 5.5 and ${\sim}49^{\circ}C$, and the enzyme activity rapidly decreased above $40^{\circ}C$. When compared with mesophilic counterparts, the phytase not only exhibited a high activity at a low temperature, but also had a low $K_m$ and high $k_{cat}$. These temperature characteristics and kinetic parameters are consistent with low-temperature-active enzymes. To our knowledge, this would appear to be the first report of a low-temperature-active phytase and its heterogeneous expression.

Temperature Regulates Melanin Synthesis in Melanocytes

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.840-845
    • /
    • 2003
  • Temperature change is one of the major environmental factors that influence the human skin. However, the relationship between temperature and melanogenesis has received little attention. In the present study, we investigated the effects of temperature change on melanogenesis in a mouse melanocyte cell line (Mel-Ab), and primary cultured human melanocytes. We found that Mel-Ab cells cultured at low temperatures (31 and 34$^{\circ}C$) produce less melanin than cells at 37$^{\circ}C$. These results were confirmed by experiments upon human melanocytes, demonstrating that the hypopigmenting effect of low temperatures is not cell type dependent. The observed melanin production was found to be accompanied by tyrosinase activity at each temperature, indicating that tyrosinase activity is regulated by temperature. We further examined whether the incubation period at low temperatures plays an important role in the regulation of melanogenesis. Short exposures to 27$^{\circ}C$ for 1 h or 3 h did not affect tyrosinase activity or melanin synthesis, whereas long exposures to 31$^{\circ}C$ for 2 days or 6 days significantly reduced tyrosinase activity and melanin synthesis in a duration-dependent manner. Our results suggest that exposure to low temperature and the duration of this exposure are important regulators of melanogenesis.

Effects of Low Temperature during Ripening on Amylose Content and Enzyme Activities Associated with Starch Biosynthesis in Rice Endosperm

  • Baek, Jung-sun;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyen-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.86-97
    • /
    • 2018
  • The objective of this study was to determine the effects of low temperature on starch accumulation in rice grains. We used four major Japonica-type Korean rice cultivars as materials: Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), and Hwawang (HW). Rice plants were moved into two phytotrons the day after heading. Temperatures in the two phytotrons were maintained at $19/29^{\circ}C$ (night/day) as the control, and $13/23^{\circ}C$ as the low temperature condition, both under natural daylight with a relative humidity of 65%. The ripening rates of JB and JJ showed no significant difference between the low temperature and control conditions at 45 days after heading (DAH). In contrast, the ripening rates of GY and HW were 86% and 57% lower than those of JB and JJ under the low temperature condition at 45 DAH, respectively. However, the ripening rates of these four varieties at 61 DAH (when accumulated temperature reached $1,100^{\circ}C$) under the low temperature condition were similar to those at 45 DAH under the control condition (JB, 94%; JJ, 97%; GY, 97%; HW, 88%). The total starch contents showed no significant difference between the control and low temperature conditions. However, the amylose contents in the cultivars were higher under the low temperature than under the control condition. The enzyme activities of starch biosynthesis were about 5-10 days slower in cultivars under the low temperature than under the control. The grain-filling rate showed significant correlations with the enzyme activities of SuSase ($r^2=0.70^{***}$), AGPase ($r^2=0.63^{***}$), UDPase ($r^2=0.36^{***}$), StSase ($r^2=0.51^{***}$), and SBE ($r^2=0.59^{***}$). In conclusion, although StSase activity was increased at $13/23^{\circ}C$ up to 20 DAH, there might not be enough time for SBE to synthesize amylopectin, thus affecting the amylose content of HW, which had the slowest grain filling rate. Notably, the decreased activity of SuSase and SBE and late increase in AGPase activity under the low temperature during the ripening stage are considered to be disadvantageous, as they delay ripening and increase the amylose content.