• Title/Summary/Keyword: Low-stress mechanical properties

Search Result 290, Processing Time 0.027 seconds

An Experimental Study on the Mechanical Properties of No-Fines Concrete (No-Fines Concrete의 역학적 특성에 관한 실험적 연구)

  • 홍건호;정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.190-200
    • /
    • 1994
  • The purpose of this research is to examine experimentally the mechanical properties and economics of No-fines concrete for its application to the low-rise housing construction. Basic mechanical properties of No fines concrete are studied by measuring of compressive, tensile strength and stress-strain relationship, and economics of it is compared with other materials in unit cost and wall construction cost. From the test results, it can be concluded that No-fines concrete has advantages of good workability, light weight and lower construction cost, even though it has lower strength and modulus of elasticity than normal conc:rt:te does.

Fatigue Life Predictions for Variable Load Histories - Part II : Computer Software for Predictions of Fatigue Crack Initiation Life - (變動荷重下의 疲勞壽命 豫測 第2報)

  • 이시중;송지호;하재선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1350-1357
    • /
    • 1988
  • A computer software was developed for predictions of fatigue crack initiation life of notched members under variable loadings. The software was constructed based on a new fatigue life prediction method utilizing modified .epsilon.-N curves, which can account for the stress interaction effect. The effect of mean plastic strain on low-cycle fatigue life was also incorporated in the software. The software can be utilized for the first step approximation when fundamental data of material fatigue properties are not available.

An Experimental Study on the Properties of Ultra Low Heat Mass Concrete Containing Limestone Powder (석회석미분말을 혼입한 초저발열 매스콘크리트의 특성에 관한 연구)

  • 하재담;김동석;김태홍;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1175-1180
    • /
    • 2000
  • Recently, the crack of concrete induced by the heat of hydration of cement is a serious problem for more greater, special and higher strength of concrete structures. The increasing concrete's temperature is mainly caused by the heat of hydration of cement and so, to control the thermal stress of concrete structure is desirable to use low heater material of hydration. There are many methods to diminish the increasing of concrete temperature such as using of low heat cement, addition of fly-ash, application of pre-cooling, etc., and in this study, we evaluate the heating and mechanical properties of ultra low heat mass concrete using Low Heat Portland(KS Type IV) cement with 30% of limestone powder. The results of this study will be applied to side wall and bottom of No. 15 and 16 of underground LNG tank in Inchon.

Coupled Analysis of Hydrogen Transport Within ABAQUS (ABAQUS 를 이용한 수소확산 해석)

  • Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.600-606
    • /
    • 2009
  • In this paper, the coupled model with hydrogen transport and elasto-plasticity behavior is introduced. This model is implemented to the general-purpose FE code, ABAQUS, via the user-defined subroutine UMAT and UMATHT. In UMAT, the spatial gradients of hydrostatic stress and hydrogen induced deformation are calculated, and then are passed into UMATHT. Heat transfer equation within UMATHT is substituted by hydrogen transport equation including the effects of stress states and strain hardening. To validate this model, the finite element analyses coupled with hydrogen transport and mechanical loading are performed for the boundary layer specimens with low and high strength steel properties. The FE results are compared with the previous studies by Taha and Sofronis (2001).

Shearing and Electro-optical Properties of Stressed Cholesteric Liquid Crystal Cells

  • Lee, Jung-Min;Kang, Dae-Seung
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.91-93
    • /
    • 2010
  • The shearing effects on the electro-optical properties of a stressed cholesteric liquid crystal were investigated. A photopolymer was dispersed in the cholesteric liquid crystal cell. By carefully choosing the mixing ratio between the liquid crystal and the photoreactive monomer, and by applying suitable mechanical shearing on the substrates, a cholesteric liquid crystal display with a low threshold voltage and no alignment layer was demonstrated.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase (탄소강 조직의 형상 및 분포에 따른 유한요소해석)

  • Seo, Dae-Cheol;Lee, Duck-Hee;Lee, Jung-Ju;Nam, Soo-Woo;Choo, Wung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading

  • Song, Yang;Li, Yong qi
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.535-546
    • /
    • 2020
  • The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

Viscoelastic Properties of Fruit Flesh(I) - Stress Relaxation Behavior - (과실(果實)의 점탄성(粘彈性) 특성(特性)(I) - 응력이완거동(應力弛緩擧動) -)

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.260-271
    • /
    • 1992
  • Fruits are generally subjected to mechanical forces during harvesting, handling, and transportation that may cause damage in the form of bruises, punctures, and cracks. In order to prevent damage, and insure better quality fruits for consumers, it is very essential to study physical properties of these materials. The studies were conducted to examine the effect of storage period, storage condition, and other factors, such as loading rate and initial strain, on the stress relaxation behavior of the fruit flesh, and develop nonlinear viscoelastic models to represent its stress relaxation behavior. The following results were obtained from the study : 1. Since the viscoelastic behavior of the fruits flesh was nonlinear, the behavior was satisfactorily modelled as follows ; $${\delta}({\varepsilon},\;t)={\varepsilon}^A[B\;{\exp}(-Ct)+D\;{\exp}(-Ft)+G(-Ht)]$$ But, for the every strain applied, the stress relaxation behavior of the fruit flesh, such as apple and pear, could be well described by the Generalized Maxwell model, respectively. 2. The effect of loading rate on the stress relaxation behavior was remarkable. The higher loading rate resulted in the higher initial stress, and the faster stress relaxation. 3. The higher initial strain resulted in the higher initial stress, and stress relaxed at the large initial strain was also much higher than at the small initial strain. 4. Stress relaxation rate and quantity stored in the fruits at the low temperature storage were much higher than those at the normal temperature storage in the same storage period. Also, in all fruits tested, the longer storage period was the more relaxation rate and quantity were shown. These trends in the normal temperature condition was the more significant than in the low temperature condition.

  • PDF