• Title/Summary/Keyword: Low-shrinkage alumina

검색결과 19건 처리시간 0.021초

알루미나/텅스텐 동시소성에 의한 다층 팩키지 제조시 적층조건에 따른 camber의 변화 (Changes of Camber on Lamination Conditions in alumina/Tungsten Cofiring Multilayer Package)

  • 성재석;구기덕;윤종광;이상진;박정현
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.601-610
    • /
    • 1997
  • In cofiring of multilayered alumina with tungsten, the change of camber with lamination condition was experimented and the effect of sintering shrinkage of alumina and tungsten was investigated. From the exact measurement of sintering shrinkage of tungsten thick film, as lamination pressure increased, the sintering shrinkage of alumina decreased but that of tungsten thick film was not changed. So it was though that the main factor which induced the sintering shrinkage difference between ceramics and metal with lamination condition was the change of sintering shrinkage of ceramics. In case of high lamination pressure, high green sheet density, the cofired specimen showed low camber due to low shrinkage difference between alumina and tungsten and there was a linear relation between camber and shrinkage difference. It was found that this shrinkage difference could change the thickness of tungsten film and the microstructure within via hole during cofiring.

  • PDF

Alumina와 zirconia가 치과용 코아 도재의 물리적 성질에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY OF THE EFFECT OF ALUMINA AND ZIRCONIA ON MECHANICAL PROPERTIES OF DENTAL CORE PORCELAIN)

  • 신현수;이상진;이근우
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.317-349
    • /
    • 1993
  • This study investigated the effect of filler particle size and weight% on mechanical properties of dental core porcelain. In alumina, variation in particle size and weight% and in zirconia, variation in weight%, all specimens were tested three-point bending strength, transmittance, thermal expansion coefficient, porosity and shrinkage and observed with SEM and analysed with X-ray diffractometer. In order to develop shrink-free porcelain, after firing alumina only, glass wasinfiltrated. And aluminum was added to alumina with the expanding character of aluminum oxidize into alumina, and was followed by second firing of glass infiltration procedure. Then mechanical properties were observed. The results of this study were obtained as follows. 1. The bending strength of zirconia was higher than that of alumina, and $5{\mu}m$ alumina had highest strength in variation of particle size of alumina. Except for $5{\mu}m$ alumina, increased with weight%, bending strength increased up to 80% and decreased at 90%. In case of glass infiltration, bending strength was slight higher than 80% and 90% of $5{\mu}m$ alumina. 2. Transmittance increased with increase of shrinkage, decrease of porosity, and with increase of filler size and had no direct correlation with weight%. 3. Thermal expansion coefficient of alumina group was $7.42\sim8.64\times10^{-6}/^{\circ}C$ and that of zirconia group was $9.83\sim12.11\times10^{-6}/^{\circ}C$ and the latter was higher than the former. 4. In x-ray diffraction analysis, alumina group and zirconia group increased $Al_2O_3$ peak and $t-ZrO_2$ peak with increase of weight%. The second phase(cristobalite peak) was observed in zirconia 40% group. 5. Porosity of zirconia was lower than that of alumina and $5{\mu}m$ alumina group had many pores with SEM. In case of low filler content, fracture occurred in glass and high filler content, in glass and filler. In case of aluminum addition to alumina, small oxidised aluminum was observed. 6. Zirconia group had high shrinkage than alumina group, and mixed group of alumina group had high shrinkage. In case of glass infiltration, shrinkage decreased and aluminum addition to alumina group was almost shrink-free.

  • PDF

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동 (Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders)

  • 황규홍;김의훈
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

저수축 반응소결 알루미나 세라믹스의 제조 (Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics)

  • 박정현;이현권;정경원;염강섭
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF

2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성 (Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer)

  • 유창민;이창현;신효순;여동훈;김성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

Al2O3 첨가에 따른 potashborosilicate glass ceramic 기판의 특성변화에 관한연구 (Properties of Potashborosilicate Glass-ceramic Substrate by adding Al2O3)

  • 김용철
    • 마이크로전자및패키징학회지
    • /
    • 제5권2호
    • /
    • pp.53-58
    • /
    • 1998
  • Sintering and dielectric characteristics of substrates were estimated by mixing rate of alumina and potashborosilicate glass(PBSG) powders. PBSG powders were used 7761(corning code)and alumina powders were used in extra pure rate(99.9%) and had 0.1 ${\mu}$m mean size. After ball milling with organic additives green sheets which were casted by doctor blade machine were sintered at 800$^{\circ}C$ for 1∼3hrs. Microstructure, linear shrinkage and dielectric constant of substrates were surveyed in order to fabricate low-dielectric and low tem-perature sintering substrate.

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동 (Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics)

  • 황규홍;박정환;윤태경
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Shrinkage Free Sintering of Low Temperature Cofired Ceramics by Glass Infilteration

  • Yeo, Dong-Hun;You, Jung-Hun;Shin, Hyo-Soon;Kim, Jong-Hee
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1218-1219
    • /
    • 2006
  • The shrinkage variation of Low Temperature Cofired Ceramics(LTCC) limits the size of the substrates that impose limitations on embedded passive components. This paper focuses on the method of minimizing or controlling planar shrinkage and reducing distortion during firing. The laminated sheets of alumina and glass were sintered at varying temperature, and depending on the amount of the glass ceramics. When the sintered of multi-layer structure with $Al_2O_3/Glass/Al_2O_3$, the glass infiltrated entirely into $Al_2O_3$ layer at the temperature of about $950^{\circ}C$ or higher.

  • PDF

수산화알루미늄으로부터 수열법을 이용한 활성 알루미나 제조에 관한 연구 (Fabrication of Activated Alumina Using Aluminum Hydroxide by a Hydrothermal Process)

  • 배현철;이상진
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.384-389
    • /
    • 2013
  • Activated alumina was fabricated with aluminum hydroxide in this study. High-purity alumina gel and boehmite were prepared from aluminum hydroxide by a hydrothermal process and fired to activate alumina having a surface area of 380 ~ 480 $m^2/g$ with less loss of ignition. The aging and drying condition during the fabrication process affected the loss of ignition, the sedimentation time of the alumina suspension, as well as the surface area of the activated alumina. For pellet-type activated alumina, the pre-fired alumina gel and boehmite were press-formed and fired at $400^{\circ}C$ and $550^{\circ}C$ for 6 h, respectively. The fired pellets showed a low density of 2.0 ~ 2.2 $g/cm^3$ with 20% firing shrinkage and sufficient handling strength. In this study, a new fabrication process for high-quality activated alumina with aluminum hydroxide is introduced. The effects of the processing parameters on the activated alumina properties are also examined.

알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향 (EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES)

  • 이화진;송광엽;강정길
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF