• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.031 seconds

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

A Cause Analysis on the Reduction of Stream Flow for the Cheongdocheon (청도천의 건천화 원인분석)

  • Lee, Sang-Ho;Park, Jong-Pyo;Lee, Jung-Min;Cho, Hyo-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1069-1082
    • /
    • 2003
  • The Cheongdocheon has the reaches under reduction of stream flow. We analysed the cause of the reduction. We investigated the current status of facilities for agricultural water use. We also compared the discharge measurements with the results from the continuous simulation of watershed runoff The satellite image was a tool to find some reaches of stream flow reduction under doubt. Agricultural reservoirs block up the stream and water does not flow over the reservoirs except by storm. They also discharge water through diversion channels and the water diverted does not flow through the natural stream. Farmers directly take water from the stream by weirs. The infiltration gallery of water below the stream ground makes the reach dryness perfect in Kamakchon. These are causes of the stream flow reduction. The discharge measurements are less than the simulation results of watershed runoff, and we guess that the reaches investigated have dried. We found the reaches of stream flow reduction that were under doubt from some KOMPSAT satellite images with the resolution of 6.6 m. Then, we confirmed the reduction of stream flow by a field investigation. All the above reaches have infiltration galleries of water below the stream ground. The research results are a case study on the cause analysis on the reduction of stream flow. One can obtain the KOMPSAT image for a low price and can get prior information to find the doubtful reach of stream flow reduction.

Research for robot kidnap problem in the indoor of utilizing external image information and the absolute spatial coordinates (실내 공간에서 이동 로봇의 납치 문제 해결을 위한 외부 영상 정보 및 절대 공간 좌표 활용 연구)

  • Jeon, Young-Pil;Park, Jong-Ho;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2123-2130
    • /
    • 2015
  • For such automatic monitoring robot or a robot cleaner that is utilized indoors, if it deviates from someone by replacement or, or of a mobile robot such as collisions with unexpected object direction or planned path, based on the planned path There is a need to come back to, it is necessary to tough self-position estimation ability of mobile robot in this, which is also associated with resolution of the kidnap problem of conventional mobile robot. In this study, the case of a mobile robot, operates indoors, you want to take advantage of the low cost of the robot. Therefore, in this paper, by using the acquisition device to an external image information such as the CCTV which is installed in a room, it acquires the environment image and take advantage of marker recognition of the mobile robot at the same time and converted it absolutely spatial coordinates it is, we are trying to solve the self-position estimation of the mobile robot in the room and kidnap problem and actual implementation methods potential field to try utilizing robotic systems. Thus, by implementing the method proposed in this study to the actual robot system, and is promoting the relevant experiment was to verify the results.

Volumetric accuracy of cone-beam computed tomography

  • Park, Cheol-Woo;Kim, Jin-ho;Seo, Yu-Kyeong;Lee, Sae-Rom;Kang, Ju-Hee;Oh, Song-Hee;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.47 no.3
    • /
    • pp.165-174
    • /
    • 2017
  • Purpose: This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Materials and Methods: Four geometric objects(cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. Results: The mean VE ranged from -4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. Conclusion: The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

Image enhancement in ultrasound passive cavitation imaging using centroid and flatness of received channel data (수신 채널 신호의 무게중심과 평탄도를 이용한 초음파 수동 공동 영상의 화질 개선)

  • Jeong, Mok Kun;Kwon, Sung Jae;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.450-458
    • /
    • 2019
  • Passive cavitation imaging method is used to observe the ultrasonic waves generated when a group of bubbles collapses. A problem with passive cavitation imaging is a low resolution and large side lobe levels. Since ultrasound signals generated by passive cavitation take the form of a pulse, the amplitude distribution of signals received across the receive channels varies depending on the direction of incidence. Both the centroid and flatness were calculated to determine weights at imaging points in order to discriminate between the main and side lobe signals from the signal amplitude distribution of the received channel data and to reduce the side lobe levels. The centroid quantifies how the channel data are distributed across the receive channel, and the flatness measures the variance of the channel data. We applied the centroid weight and the flatness to the passive cavitation image constructed using the delay-and-sum focusing and minimum variance beamforming methods to improve the image quality. Using computer simulation and experiment, we show that the application of weighting in delay-and-sum and minimum variance beamforming reduces side lobe levels.

Development of the Measurement Method of Extremely Low Level Activity with Imaging Plate (Imaging Plate를 이용한 극저준위 방사능 측정에 관한 연구)

  • Kwak, Ji-Yeon;Lee, K.B.;Lee, Jong-Man;Park, Tae-Soon;Oh, Pil-Jae;Lee, Min-Kie;Seo, Ji-Suk;Hwang, Han-Yull
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • An imaging plate(IP) detector, a two-dimensional digital radiation detector that can acquire image of radioactivity distribution in a sample, has been applied in many fields; for industrial radiography, medical diagnosis, X-ray diffraction test, etc. In this study, the possibility of IP detector to be used lot measuring radioactivity of sample is explored using its high sensitivity, higher spatial resolution, wider dynamic range and screen uniformity for several kinds radiations. First, the IP detector is applied to measure the surface uniformity for area source. Surface uniformity is measured rapidly and nondestructively by measuring the radioactivity distribution of common standard area source$(^{241}Am)$. Next, the IP is employed to study the possibility of measuring an extremely low-level activity of environmental sample. For this study the screen uniformity, shield effect of background radiation, linear dynamic range and fading effect of the IP detector is investigated. The potato, banana, radish and carrot samples are chosen to measure ultra low-level activity of $^{40}K$ isotope. The efficiency calibration of IP detector is carried out using the standard source.

Subsurface Geological Structure Using Shallow Seismic Reflection Survey (반사법 탄성파 탐사를 이용한 천부 지질 구조)

  • Kim Gyu-Han;Kong Young-Sae;Oh Jinyong;Lee Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1999
  • In terms of high resolution, seismic reflection survey is by far the most significant geophysical method applied to define subsurface structure. In shallow seismic reflection survey, it is, however, difficult to obtain high resolution image due to both the wave attenuation in the unconsolidated layer and the existence of source-generated surface waves Therefore, when collecting data, it is imperative to select proper equipments and choose optimum field data acquisition parameters for acquiring high S/N data. In this survey, a small size hammer was used as a low energy source and 40-Hz vertical geophones were used as receivers. Trigger signal was obtained from the hammer starter attached in the aluminum plate and thus it was possible to control the source onset time for the vertical stack. During the field work, a modified standard CMP technique was introduced to achieve the many-fold CMP data effectively. Data processing was conducted by the 'Seismic Unix' which is mounted on PC with a Linux operating system. The main distinctions were the emphasis and detail placed on near-surface velocity analysis and the extra care exercised in muting.

  • PDF

Determination of Tumor Volume in PET for the Radiation Treatment Planning: Computer Simulation (방사선치료계획을 위한 PET 종양용적 결정 연구: 컴퓨터 모의실험)

  • Yoon Seok Nam;Joh Chul-Woo;Lee Jae Sung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2005
  • The utilization of PET has been increased so fast since the usefulness of the PET has been proved in various clinical and research fields. Among the many applications, the PET Is especially useful in oncology and most of the clinical PET scans are peformed for the oncologic examination Including the different diagnosis of malignant and benign tumors and assessment of the treatment effects and recurrent tumors. As the PET-CT scanners are widely available, there is Increasing interest in the application of the PET Images to the radiation treatment planning. Although the CT images are conventionally used for the target volume determination in the radiation treatment planning, there are fundamental limitation In use of only the anatomical information. Therefore, the volume determination of the functionally active tumor region using the PET would be important for the treatment planning. However, the accurate determination of the tumor boundary is not simple in PET due to the relatively low spatial resolution of the currently available PET scanners. In this study, computer simulations were peformed to study the relationship between the lesion size, PET resolution, lesion to background ratio and the threshold of Image Intensity to determine the true tumor volume.

  • PDF

Assessment of LODs and Positional Accuracy for 3D Model based on UAV Images (무인항공영상 기반 3D 모델의 세밀도와 위치정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo;Sung, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.197-205
    • /
    • 2020
  • Compared to aerial photogrammetry, UAV photogrammetry has advantages in acquiring and utilizing high-resolution images more quickly. The production of 3D models using UAV photogrammetry has become an important issue at a time when the applications of 3D spatial information are proliferating. Therefore, this study assessed the feasibility of utilizing 3D models produced by UAV photogrammetry through quantitative and qualitative analyses. The qualitative analysis was performed in accordance with the LODs (Level of Details) specified in the 3D Land Spatial Information Construction Regulation. The results showed that the features on planes have a high LoD while features with elevation differences have a low LoD due to the occlusion area and parallax. Quantitative analysis was performed using the 3D coordinates obtained from the CPs (Checkpoints) and edges of nearby structures. The mean errors for residuals at CPs were 0.042 m to 0.059 m in the horizontal and 0.050 m to 0.161 m in the vertical coordinates while the mean errors in the structure's edges were 0.068 m and 0.071 m in horizontal and vertical coordinates, respectively. Therefore, this study confirmed the potential of 3D models from UAV photogrammetry for analyzing the digital twin and slope as well as BIM (Building Information Modeling).

Growth of Blue Light Emitting InGaN/GaN MQWs by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 청색 발광 InGaN/GaN MQWs의 성장에 관한 연구)

  • Kim, Dong-Joon;Moon, Yong-Tae;Song, Keun-Man;Park, Seong-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.11-17
    • /
    • 2000
  • We investigated the growth of InGaN/GaN multiple quantum wells (MQWs) structures which emit blue light. The samples were grown in a low pressure metalorganic chemical vapor deposition system. We examined InGaN/GaN MQWs by varying growth temperatures and thicknesses of InGaN well and GaN barrier layers in MQWs. Especially, the thickness of GaN barrier in InGaN/GaN MQWs was found to severely affect the interfacial abruptness between InGaN well and GaN barrier layers. The higher order satellite peaks in the high resolution x-ray diffraction spectra and the high resolution cross sectional transmission electron microscope image of MQW structrues revealed that the interface between InGaN and GaN layers was very abrupt. Room-temperature photoluminescence spectra also showed a blue emission from InGaN/GaN MQWs at the wavelength of 463.5nm with a narrow full width at half maximum of 72.6meV.

  • PDF