• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.03 seconds

GENERATION OF FOREST FRACTION MAP WITH MODIS IMAGES USING ENDMEMBER EXTRACTED FROM HIGH RESOLUTION IMAGE

  • Kim, Tae-Geun;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.468-470
    • /
    • 2007
  • This paper is to present an approach for generating coarse resolution (MODIS data) fraction images of forested region in Korea peninsula using forest type area fraction derived from high resolution data (ASTER data) in regional forest area. A 15-m spatial resolution multi-spectral ASTER image was acquired under clear sky conditions on September 22, 2003 over the forested area near Seoul, Korea and was used to select each end-member that represent a pure reflectance of component of forest such as different forest, bare soil and water. The area fraction of selected each end-member and a 500-m spatial resolution MODIS reflectance product covering study area was applied to a linear mixture inversion model for calculating the fraction image of forest component across the South Korea. We found that the area fraction values of each end-member observed from high resolution image data could be used to separate forest cover in low resolution image data.

  • PDF

An Efficient Super Resolution Method for Time-Series Remotely Sensed Image (시계열 위성영상을 위한 효과적인 Super Resolution 기법)

  • Jung, Seung-Kyoon;Choi, Yun-Soo;Jung, Hyung-Sup
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

Regularization-based Superresolution Demosaicing using Aperture Mask Wheels (조리개 마스크 휠을 이용한 정칙화 기반 초해상도 디모자이킹)

  • Shin, Jeongho
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.146-153
    • /
    • 2018
  • This paper presents a superresolution demosaicing technique that can restore high-resolution color image from differently blurred low resolution images in Bayer domain. The proposed superresolution demosaicing algorithm uses an aperture mask wheel to get differently blurred low resolution images, so we just need to estimate point spread function at each frame. In addition, it does not require image registration because there is no translational motion between low resolution images. By using a rotatable aperture mask wheel, consecutive captured images provide sufficiently exclusive information for superresolution. Therefore, the proposed method can reduce the registration error between the low-resolution image as well as the calculation amount for superresolution restoration. The existing lens system of the camera can be extended to obtain a superresolution image by only adding an rotatable aperture mask wheels. Finally, in order to verify the performance of the proposed system, experimental results are performed. The proposed method showed the significant improvements in the sense of spatial and color resolution.

Neural network based distortion correction of wide angle lens (신경회로망을 이용한 광각렌즈의 왜곡보정)

  • 정규원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.299-301
    • /
    • 1996
  • Since a standard lens has small sight angle, a fish-eye lens can be used in order to obtain wide sight angle for the robot vision system. In spite of the advantage, the image through the lens has variable resolution; the central information of the lens is of high resolution, but the peripheral information is of low resolution. Owing to this difference of resolution, the variable resolution image should be transformed to a uniform resolution image in order to determine the positions of the objects in the image. In this work, the correction method for the distorted image is presented and the performance is analyzed. Furthermore, the camera with a fish eye lens can be used to determine the real world coordinates. The performance is shown through experiments.

  • PDF

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

A Study on the Resolution Enhancement of Digital Image by Area-Based Matching (영역기반정합에 의한 수치영상의 해상도 강화에 관한 연구)

  • 오원진;배연성;주영은
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.263-269
    • /
    • 2000
  • As the accuracy of digital photogrammetry is restricted by the resolution of image to be used, it is axiomatic that the resolution of image should be improved. As for the method to constitute hardware with CCD sensor that capacity was expanded or the method to acquire the image of high resolution by deciding the quantity of sub-pixel in advance through moving sensor, the price is expensive. This study tries to enhance the resolution of low resolution image by acquiring the image with the digital camera that the price is cheap and deciding shifts and rotations through matching multiple digital image by means of least square method. As the result of study, the resolution of digital image was improved greatly. So, not only the digital photogrammetry which has the competitive power of price economically is possible in the future but also the application is expected widely.

  • PDF

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement (Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상)

  • Jang, Hyo-Sik;Kim, Duk-Gyoo;Jung, Yoon-Soo;Lee, Tae-Gyoun;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.