• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.034 seconds

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Preprocessing Methods for Low-Resolution Face Image Recognition (저해상도 영상 얼굴인식을 위한 전처리 방법)

  • Lee, Philku;Kim, Tai Yoon;Lee, Dasol;Kim, Seongjai
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.781-784
    • /
    • 2017
  • Face recognition systems are characterized by low invasiveness of acquisition, and increasingly better reliability. Such systems may not be applied effectively, when the images are in low resolution (LR) as in the case that photos are taken from long distances, typically public surveillance. In theory, the high resolution (HR) image reconstructed from an LR face image, applying a super resolution (SR) method, can be used for face recognition. However, existing face SR algorithms may not give satisfactory results in face recognition. This article investigates the very low resolution face recognition problem and introduces a partial differential equation (PDE)-based SR method for a face recognition system of convolutional neural network (CNN).

An Image Resolution Enhancement Method Using Loss Information Estimation (손실 정보 추정을 이용한 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Gil-Ho;Kim, Jong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.657-660
    • /
    • 2009
  • An image interpolation is a basis technique for various image processing and is required to minimize approaches for image quality deterioration. In this paper, we propose an improved bilinear interpolation using loss information estimation. In the proposed algorithm, we estimate loss information of low resolution image using down-sampling and interpolation of acquisition low resolution. The estimated loss information is utilized interpolated image, and it decrease image quality deterioration. Our experiments obtained the average PSNR 0.97~1.79dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image resolution enhancement and image restoration.

  • PDF

A Background Segmentation Using Color and Edge Information In Low Resolution Color Image (저해상도 칼라 영상의 색상 정보와 에지정보를 이용한 배경 분리)

  • 정민영;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.

  • PDF

Resolution Merge of SPOT-5 Image for National Land Monitoring (국토모니터링을 위한 SPOT-5 위성영상 융합)

  • Park, Kyeong-Sik;Choi, Seok-Keun;Lee, Jae-Kee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.141-144
    • /
    • 2007
  • Satellite image for national land monitoring is required high resolution and natural color with multi spectral band. the image is expensive as higher resolution. We need cheap image relatively in economic viewpoint but the image serves sufficient resolution to monitor national land. We merged two images to one image and evaluated the result. the two images which are used at the merge test are high resolution(2.5m per pixel) panchromatic and low resolution(10m per pixel) multi spectral image of SPOT-5 satellite. The result of this study. We made the merge image to have sufficient resolution for national monitoring.

  • PDF

Multi-resolution Image Registration

  • Wisetphanichkij, Sompong;Dejhan, Kobchai;Likitkarnpaiboon, Prayong;Cheevasuvit, Fusak;Sra-Ium, Napat;Vorrawat, Vinai;Pienvijarnpong, Chanchai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.263-265
    • /
    • 2003
  • The computation cost of image registration is affected by searching data size and space. This paper proposes an efficient image registration algorithm that uses multi-resolution wavelet decomposed image to reduce the data size search. The algorithm determines the correlation detection at low resolution on low-pass sub bands of wavelet and generate mask for higher resolution as part of a coarse to fine registration algorithm. The correlation matching is defined for coarse resolution similarity measurement, while mutual information (MI) is used at fine resolution. The results show that the new efficient mask-based algorithm improves computational efficiency and yields robust and consistent image registration results.

  • PDF

Adaptive Image Interpolation Using Pixel Embedding (화소 삽입을 이용한 적응적 영상보간)

  • Han, Kyu-Phil;Oh, Gil-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1393-1401
    • /
    • 2014
  • This paper presents an adaptive image interpolation method using a pixel-based neighbor embedding which is modified from the patch-based neighbor embedding of contemporary super resolution algorithms. Conventional interpolation methods for high resolution detect at least 16-directional edges in order to remove zig-zaging effects and selectively choose the interpolation strategy according to the direction and value of edge. Thus, they require much computation and high complexity. In order to develop a simple interpolation method preserving edge's directional shape, the proposed algorithm adopts the simplest Haar wavelet and suggests a new pixel-based embedding scheme. First, the low-quality image but high resolution, magnified into 1 octave above, is acquired using an adaptive 8-directional interpolation based on the high frequency coefficients of the wavelet transform. Thereafter, the pixel embedding process updates a high resolution pixel of the magnified image with the weighted sum of the best matched pixel value, which is searched at its low resolution image. As the results, the proposed scheme is simple and removes zig-zaging effects without any additional process.

Resolution enhanced integral imaging using super-resolution image reconstruction algorithm (초해상도 영상복원을 이용한 집적영상의 해상도 향상)

  • Hong, Kee-Hoon;Park, Jae-Hyeung;Lee, Byoung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1124-1132
    • /
    • 2009
  • We proposed a new method to improve the resolution of elemental image set in the integral imaging system using super-resolution image reconstruction method. Adjacent elemental images have same image region which is projected from the common area of object. These projected images in the elemental image can be used for low resolution images of super-resolution method. Two methods for resolution improvement of elemental image set using super-resolution method are proposed. One is super-resolution among the elemental image sets and the other is among the elemental images. Simulation results are compared with resolution improved elemental image set using interpolated method.

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.

Consecutive-Frame Super-Resolution considering Moving Object Region

  • Cho, Sung Min;Jeong, Woo Jin;Jang, Kyung Hyun;Choi, Byung In;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose a consecutive-frame super-resolution method to tackle a moving object problem. The super-resolution is a method restoring a high resolution image from a low resolution image. The super-resolution is classified into two types, briefly, single-frame super-resolution and consecutive-frame super-resolution. Typically, the consecutive-frame super-resolution recovers a better than the single-frame super-resolution, because it use more information from consecutive frames. However, the consecutive-frame super-resolution failed to recover the moving object. Therefore, we proposed an improved method via moving object detection. Experimental results showed that the proposed method restored both the moving object and the background properly.