• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.034 seconds

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

A Study of CNN-based Super-Resolution Method for Remote Sensing Image (원격 탐사 영상을 활용한 CNN 기반의 초해상화 기법 연구)

  • Choi, Yeonju;Kim, Minsik;Kim, Yongwoo;Han, Sanghyuck
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.449-460
    • /
    • 2020
  • Super-resolution is a technique used to reconstruct an image with low-resolution into that of high-resolution. Recently, deep-learning based super resolution has become the mainstream, and applications of these methods are widely used in the remote sensing field. In this paper, we propose a super-resolution method based on the deep back-projection network model to improve the satellite image resolution by the factor of four. In the process, we customized the loss function with the edge loss to result in a more detailed feature of the boundary of each object and to improve the stability of the model training using generative adversarial network based on Wasserstein distance loss. Also, we have applied the detail preserving image down-scaling method to enhance the naturalness of the training output. Finally, by including the modified-residual learning with a panchromatic feature in the final step of the training process. Our proposed method is able to reconstruct fine features and high frequency information. Comparing the results of our method with that of the others, we propose that the super-resolution method improves the sharpness and the clarity of WorldView-3 and KOMPSAT-2 images.

Region-Based Reconstruction Method for Resolution Enhancement of Low-Resolution Facial Image (저해상도 얼굴 영상의 해상도 개선을 위한 영역 기반 복원 방법)

  • Park, Jeong-Seon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.476-486
    • /
    • 2007
  • This paper proposes a resolution enhancement method which can reconstruct high-resolution facial images from single-frame, low-resolution facial images. The proposed method is derived from example-based reconstruction methods and the morphable face model. In order to improve the performance of the example-based reconstruction, we propose the region-based reconstruction method which can maintain the characteristics of local facial regions. Also, in order to use the capability of the morphable face model to face resolution enhancement problems, we define the extended morphable face model in which an extended face is composed of a low-resolution face, its interpolated high-resolution face, and the high-resolution equivalent, and then an extended face is separated by an extended shape vector and an extended texture vector. The encouraging results show that the proposed methods can be used to improve the performance of face recognition systems, particularly to enhance the resolution of facial images captured from visual surveillance systems.

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

Measurement of Low-Frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 저주파수 진동 계측)

  • Kim, Ki-Young;Kwak, Moon- K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.503-507
    • /
    • 2004
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we discuss the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The resolution of the vibration measurement can be refined but limited to the sub centimeter displacement.

  • PDF

DESIGN AND IMPLEMENTATION OF 3D TERRAIN RENDERING SYSTEM ON MOBILE ENVIRONMENT USING HIGH RESOLUTION SATELLITE IMAGERY

  • Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.417-420
    • /
    • 2006
  • In these days, mobile application dealing with information contents on mobile or handheld devices such as mobile communicator, PDA or WAP device face the most important industrial needs. The motivation of this study is the design and implementation of mobile application using high resolution satellite imagery, large-sized image data set. Although major advantages of mobile devices are portability and mobility to users, limited system resources such as small-sized memory, slow CPU, low power and small screen size are the main obstacles to developers who should handle a large volume of geo-based 3D model. Related to this, the previous works have been concentrated on GIS-based location awareness services on mobile; however, the mobile 3D terrain model, which aims at this study, with the source data of DEM (Digital Elevation Model) and high resolution satellite imagery is not considered yet, in the other mobile systems. The main functions of 3D graphic processing or pixel pipeline in this prototype are implemented with OpenGL|ES (Embedded System) standard API (Application Programming Interface) released by Khronos group. In the developing stage, experiments to investigate optimal operation environment and good performance are carried out: TIN-based vertex generation with regular elevation data, image tiling, and image-vertex texturing, text processing of Unicode type and ASCII type.

  • PDF

Reconstruction of HR by POCS and Regularized Block Matching (정규화된 블록매칭과 POCS에 의한 HR 영상 재구성)

  • Choi Jong-Beom;Oh Tae-Seok;Kim Yong Cheo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.824-831
    • /
    • 2005
  • In the reconstruction of high resolution (HR) images from low resolution (LR) images frames, the error in the estimated motion degrades the reliability of the reconstructed HR image. Some methods were recently proposed where motion estimation and HR reconstruction is performed simultaneously. The estimated motion is still prone to error when it is based on a simple block matching. In this paper, we propose a reconstruction of a HR image by applying POCS and a regularized block matching simultaneously. In this method, a motion vector is obtained from a regularized block matching algorithm since the motion of a pixel in an image is highly correlated with the motion in neighboring regions. Experimental results show that the improved accuracy of the estimated motion vectors results in higher PSNR of the reconstructed HR images.

Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis (포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • This paper discusses low resolution face recognition using the photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction since it does not suffer from the singularity problem of the fisher LDA. The linear discriminant function for optimal projection is determined in high dimensional space to classify unknown objects, thus, it is more efficient in dealing with low resolution facial images as well as conventional face distortions. The simulation results show that the proposed method is superior to Eigen face and Fisher face in terms of the accuracy and false alarm rates.

Study on Three-dimension Reconstruction to Low Resolution Image of Crops (작물의 저해상도 이미지에 대한 3차원 복원에 관한 연구)

  • Oh, Jang-Seok;Hong, Hyung-Gil;Yun, Hae-Yong;Cho, Yong-Jun;Woo, Seong-Yong;Song, Su-Hwan;Seo, Kap-Ho;Kim, Dae-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.98-103
    • /
    • 2019
  • A more accurate method of feature point extraction and matching for three-dimensional reconstruction using low-resolution images of crops is proposed herein. This method is important in basic computer vision. In addition to three-dimensional reconstruction from exact matching, map-making and camera location information such as simultaneous localization and mapping can be calculated. The results of this study suggest applicable methods for low-resolution images that produce accurate results. This is expected to contribute to a system that measures crop growth condition.