• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.04 seconds

An Improved Input Image Selection Algorithm for Super Resolution Still Image Reconstruction from Video Sequence (비디오 시퀀스로부터 고해상도 정지영상 복원을 위한 입력영상 선택 알고리즘)

  • Lee, Si-Kyoung;Cho, Hyo-Moon;Cho, Sang-Bok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • In this paper, we propose the input image selection-method to improve the reconstructed high-resolution (HR) image quality. To obtain ideal super-resolution (SR) reconstruction image, all input images are well-registered. However, the registration is not ideal in practice. Due to this reason, the selection of input images with low registration error (RE) is more important than the number of input images in order to obtain good quality of a HR image. The suitability of a candidate input image can be determined by using statistical and restricted registration properties. Therefore, we propose the proper candidate input Low Resolution(LR) image selection-method as a pre-processing for the SR reconstruction in automatic manner. In video sequences, all input images in specified region are allowed to use SR reconstruction as low-resolution input image and/or the reference image. The candidacy of an input LR image is decided by the threshold value and this threshold is calculated by using the maximum motion compensation error (MMCE) of the reference image. If the motion compensation error (MCE) of LR input image is in the range of 0 < MCE < MMCE then this LR input image is selected for SR reconstruction, else then LR input image are neglected. The optimal reference LR (ORLR) image is decided by comparing the number of the selected LR input (SLRI) images with each reference LR input (RLRI) image. Finally, we generate a HR image by using optimal reference LR image and selected LR images and by using the Hardie's interpolation method. This proposed algorithm is expected to improve the quality of SR without any user intervention.

  • PDF

Edge model based digital still image enlargement considering low-resolution CCD device characteristics (저해상도 CCD 소자 특성을 고려한 경계 모델 기반 디지털 정지 영상 확대)

  • 전준근;최영호;김한주;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2345-2354
    • /
    • 1998
  • There have been many researches to yield higher resolution image quality from the low resolution CCD device. The resolution of it is primary factor for the image quality of digital still camera and in manufacturing price. IN this paper, image enlargement algorithm, which reduces blocking effect of enlarged low resolution image and minimizes ringing and blur effect occurring around edge in linear interpolation, is proposed. This algorithm is composed of gaussian low pass filter which eliminates aliasing, least square spline interpolation and non-linear interpolation based on step edge model.

  • PDF

High Resolution Reconstruction of Multispectral Imagery with Low Resolution (저해상도 Multispectral 영상의 고해상도 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • This study presents an approach to reconstruct high-resolution imagery for multispectral imagery of low-resolution using panchromatic imagery of high-resolution. The proposed scheme reconstructs a high-resolution image which agrees with original spectral values. It uses a linear model of high-and low- resolution images and consists of two stages. The first one is to perform a global estimation of the least square error on the basis of a linear model of low-resolution image associated with high-resolution feature, and next local correction then makes the reconstructed image locally fit to the original spectral values. In this study, the new method was applied to KOMPSAT-1 EOC image of 6m and LANDSAT ETM+ of 30m, and an 1m RGB image was also generated from 4m IKONOS multispectral data. The results show its capability to reconstruct high-resolution imagery from multispectral data of low-resolution.

Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction (압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법)

  • Kim, Yongwoo;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

Reconstruction of High-Resolution Facial Image Based on Recursive Error Back-Projection of Top-Down Machine Learning (하향식 기계학습의 반복적 오차 역투영에 기반한 고해상도 얼굴 영상의 복원)

  • Park, Jeong-Seon;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.266-274
    • /
    • 2007
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on top-down machine learning and recursive error back-projection. A face is represented by a linear combination of prototypes of shape and that of texture. With the shape and texture information of each pixel in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those that of texture by solving least square minimizations. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes. In addition, a recursive error back-projection procedure is applied to improve the reconstruction accuracy of high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution images captured at a distance.

Image Resolution Improvement Using Image Loss Information (영상의 손실 정보를 이용하는 영상 해상도 개선)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.573-577
    • /
    • 2010
  • Image resolution improvement is commonly technique for applications such as image reconstruction or enlargement. It is important to remove image quality degradation such as blocking effect or artificiality occurrence. In this paper, we propose image resolution improvement method using loss information of image. The proposed compute and estimate by low level interpolation of obtained low resolution image, it is applied by interpolated high resolution as 1-stage interpolation. We generate last interpolation image by iteration of error computation and application between obtained low resolution image and 1-stage interpolation image. By experiments using same test images, we confirmed improvement over 3.2dB of average PSNR and enhancement of subject image quality. Also, we can reduce more than 85% computation complexity. The proposed image resolution improvement method may be helpful for various applications of image processing.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Stage-GAN with Semantic Maps for Large-scale Image Super-resolution

  • Wei, Zhensong;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3942-3961
    • /
    • 2019
  • Recently, the models of deep super-resolution networks can successfully learn the non-linear mapping from the low-resolution inputs to high-resolution outputs. However, for large scaling factors, this approach has difficulties in learning the relation of low-resolution to high-resolution images, which lead to the poor restoration. In this paper, we propose Stage Generative Adversarial Networks (Stage-GAN) with semantic maps for image super-resolution (SR) in large scaling factors. We decompose the task of image super-resolution into a novel semantic map based reconstruction and refinement process. In the initial stage, the semantic maps based on the given low-resolution images can be generated by Stage-0 GAN. In the next stage, the generated semantic maps from Stage-0 and corresponding low-resolution images can be used to yield high-resolution images by Stage-1 GAN. In order to remove the reconstruction artifacts and blurs for high-resolution images, Stage-2 GAN based post-processing module is proposed in the last stage, which can reconstruct high-resolution images with photo-realistic details. Extensive experiments and comparisons with other SR methods demonstrate that our proposed method can restore photo-realistic images with visual improvements. For scale factor ${\times}8$, our method performs favorably against other methods in terms of gradients similarity.

Multiple Shortfall Estimation Method for Image Resolution Enhancement (영상 해상도 개선을 위한 다중 부족분 추정 방법)

  • Kim, Won-Hee;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Image resolution enhancement is a technique to generate high-resolution image through improving resolution of low-resolution obtained image. It is important to estimate correctly missing pixel value in low-resolution obtained image for image resolution enhancement. In this paper, multiple shortfall estimation method for image resolution enhancement is proposed. The proposed method estimate separate multiple shortfall by predictive degradation-restoration processing in sub-images of obtained image, and generate result image combining the estimated shortfall and interpolated obtained-image. Lastly, final reconstruction image is generated by deblurring of the result image. The experimental results demonstrate that the proposed method has the best results of all compared methods in objective image quality index: PSNR, SSIM, and FSIM. The quality of reconstructed image is superior to all compared methods, and the proposed method has better lower computational complexity than compared methods. The proposed method can be useful for image resolution enhancement.