Compton imaging excels at visualizing gamma rays in the range of several hundred kiloelectronvolts to several megaelectronvolts. However, this technique has limitations in the imaging of low-energy gamma rays. In contrast, collimatorless imaging technique determines the location of a source by analyzing the distribution of interactions. Because the collimatorless imaging technique excels at imaging low-energy gamma rays that are easily shielded by detector components, it can compensate for the shortcomings of the Compton imaging technique. In this study, we propose a dual-mode imaging technique that selects the imaging method depending on the target gamma-ray energy and fuses them during reconstruction. The collimatorless imaging method demonstrated high angular resolution at low energy levels, whereas the Compton image surpasses it starting from 200 keV within its reconstructible range. The angular resolution of the dual-mode image was between those of the two methods. The trend of the positional error of gamma ray energy was similar to that of the angular resolution, and the dual-mode method exhibited the lowest average error of 0.7°. The dual imaging method exhibited higher efficiency, figure of merit, and signal-to-noise ratio by utilizing events from both imaging modalities. In addition, we investigated the geometrical effects of various structures.
Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.3
/
pp.268-274
/
2023
Image mosaicking is one of the basic and important technologies in the field of application using images. The key of image mosaicking is to extract seamlines from a joint image. The method proposed in this paper for image mosaicking is as follows. The feature points of the images to be joined are extracted and the joining form between the two images is identified. A reference position for detection the seamlines were selected according to the joint form, and an image pyramid was created for efficient image processing. The outlines of the image including buildings and roads are extracted from the overlapping area with low resolution, and the seamlines are determined by considering the components of the outlines. Based on this, the seamlines in the high-resolution image was re-searched and finally the seamline for image mosaicking was determined. In addition, in order to minimize color distortion of the image with the determined seamline, a method of improving the quality of the mosaic image by fine correction of the mosaic area was applied. It was confirmed that the quality of the seamline extraction results applying the method proposed was reasonable.
The quality of depth images is important in the 3D video system to represent complete 3D contents. However, the original depth image from a depth camera has a low resolution and a flickering problem which shows vibrating depth values in terms of temporal meaning. This problem causes an uncomfortable feeling when we look 3D contents. In order to solve a low resolution problem, we employ 3D warping and a depth weighted joint bilateral filter. A temporal mean filter can be applied to solve the flickering problem while we encounter a residual spectrum problem in the depth image. Thus, after classifying foreground andbackground regions, we use an upsampled depth image for a foreground region and temporal mean image for background region.Test results shows that the proposed method generates a time consistent depth video with a high resolution.
In this study, the correlation among the changes of Modulation Transfer Function(MTF) in the noise and high-contrast resolution and the change of Contrast to noise ratio(CNR) in the low-contrast resolution will be examined to investigate the estimation of image quality according to the type of algorithms. The image data obtained by scanning American Association of Physicists in Medicine(AAPM) phantom was applied to each algorithm and the exposure condition of 120 kVp, 250 mAs, and then the CT number and noise were measured. The MTF curved line of the high-contrast resolution was calculated with Point Spread Function(PSF) by using the analysis program by Philips, resulting in 0.5 MTF, 0.1 MTF and 0.02 MTF respectively. The low-contrast resolution was calculated with CNR and the uniformity was measured to each algorithm. Since the measurement value for the uniformity of the equipment was below ${\pm}$ 5 HU, which is the criterion figure, it was found to belong to the normal range. As the algorithm got closer from soft to edge, the standard deviation of CT number increased, which indicates that the noise increased as well. As for MTF, 0.5 MTF, 0.1 MTF and 0.02 MTF were all sharp algorithms, and as the algorithm got closer from soft to edge, it was possible to distinguish more clearly with the naked eye. On the other hand, CNR gradually decreased, because the difference between the contrast hole CT number and the acrylic CT number was the same while the noise of hole increased.
The rapid advancement of deep learning has significantly enhanced the performance of single image super-resolution (SR). However, most existing deep learning-based image SR networks only facilitate information flow in the forward direction, which limits their performance. In this study, we investigate a feedback network for precise image SR. This feedback network effectively enhances lower-level feature representation by rerouting multiple higher-level features. We sequentially construct several Residual Density Modules and deploy them repeatedly over time. Multiple feedback connections between two adjacent time steps leverage high-level features captured within a large receptive field to refine low-level features lacking sufficient contextual information. A carefully designed feedback module efficiently selects and enhances valuable information from the rerouted high-level features, thereby improving low-level features with enriched high-level information. Extensive experiments demonstrate that the proposed method outperforms existing approaches in both objective and subjective evaluations.
Kim Chang-Oh;Lee Dong-Cheon;Kim Jeong-Woo;Kim Sang-Wan;Won Joong-Sun
Proceedings of the KSRS Conference
/
2004.10a
/
pp.522-525
/
2004
Interferometry SAR (InSAR) is a technique to generate topographic map from complex data pairs observed by antennas at different locations. However, to obtain topographic information using InSAR is difficult task because it requires series of complicated process including phase unwrapping and precise recovery of the SAR geometry. Especially, accuracy of the DEM (Digital Elevation Model) produced by repeat pass single SAR pair could be influenced by atmospheric effect. Recently, a new InSAR technique to improve accuracy of DEM has been introduced that utilizes low resolution DEM with a number of SAR image pairs. The coarse DEM plays an important role in reducing phase unwrapping error caused by layover and satellite orbit error. In this study, we implemented DInSAR (Differential InSAR) method which combines low resolution DEMs and ERS tandem pair images. GTOPO30 DEM with 1km resolution, SRTM-3 DEM with 100m resolution, and DEM with 10m resolution derived from 1:25,000 digital vector map were used to investigate feasibility of DInSAR. The accuracy of the DEMs generated both by InSAR and DInSAR was evaluated.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.129-132
/
2022
Super-resolution is the process of converting a low-quality image into a high-quality image. This study was conducted using ESPCN. In a super-resolution deep neural network, different quality images can be output even when receiving the same input data according to the activation function that determines the weight when passing through each node. Therefore, the purpose of this study is to find the most suitable activation function for super-resolution by applying the activation functions ReLU, ELU, and Swish and compare the quality of the output image for the same input images. The CelebaA Dataset was used as the dataset. Images were cut into a square during the pre-processing process then the image quality was lowered. The degraded image was used as the input image and the original image was used for evaluation. As a result, ELU and swish took a long time to train compared to ReLU, which is mainly used for machine learning but showed better performance.
Recently, calligraphy has become popular because people focused on emotion. The strokes, dots, swoops, cracks and shading are the calligraphy factors for expressing various emotions such as joy, anger, sorrow, and delight. However, the emotion which is expressed by cracks and shading can be destroyed in the digital work when the calligraphy is used for a variety sizes of prints. Professionals work with high-resolution images which are obtained through the scanner, however normal users should work with low-resolution images taken with the smart phone for calligraphy image editing. We propose a raster image scaling method focused on calligraphy that maintains the emotion with cracks and shading, when normal users use the low-resolution calligraphy images in the digital work. The method recolors aliasing boundary of enlarged rasterized image. When recolored by our method, our method decreases aliasing by using the image gradient method, vivify calligraphy images, and maintains the emotion in cracks and shading by using the alpha value.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.11
/
pp.1486-1494
/
2021
Character recognition is a technology required in various platforms, such as smart parking and text to speech, and many studies are being conducted to improve its performance through new attempts. However, with low-quality image used for character recognition, a difference in resolution of the training image and test image for character recognition occurs, resulting in poor accuracy. To solve this problem, this paper designed an end-to-end learning neural network that combines image super-resolution and character recognition so that the character recognition model performance is robust against various quality data, and implemented an alternative whole learning algorithm to learn the whole neural network. An alternative end-to-end learning and recognition performance test was conducted using the license plate image among various text images, and the effectiveness of the proposed algorithm was verified with the performance test.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.