Purpose : This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. Materials and Methods : 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Results : Effective doses in ${\mu}Sv$ ($E_{2007}$) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. Conclusion : From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.10
/
pp.875-880
/
2013
When we generate 3D video that provides immersive and realistic feeling to users, depth information of the scene is essential. Since the resolution of the depth map captured by a depth sensor is lower than of the color image, we need to upsample the low-resolution depth map for high-resolution 3D video generation. In this paper, we propose a depth upsampling method using depth-discontinuity information. Using the high-resolution color image and the low-resolution depth map, we detect depth-discontinuity regions. Then, we define an energy function for the depth map upsampling and optimize it using the belief propagation method. Experimental results show that the proposed method outperforms other depth upsampling methods in terms of the bad pixel rate.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.10
/
pp.118-128
/
2015
Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by 5.75dB and 5.05dB PSNR gain on average, respectively.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.446-449
/
2009
In this paper, we present a novel method for reconstructing a super-resolution image using multi-view low-resolution images captured for depth varying scene without requiring complex analysis such as depth estimation and feature matching. The proposed method is based on the iterative back projection technique that is extended to the 3D volume domain (i.e., space + depth), unlike the conventional superresolution methods that handle only 2D translation among captured images.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.233-237
/
2009
This paper represents a new approach which addresses quality degradation of a synthesized view, when a virtual camera moves forward. Generally, interpolation technique using only two neighboring views is used when a virtual view is synthesized. Because a size of the object increases when the virtual camera moves forward, most methods solved this by interpolation in order to synthesize a virtual view. However, as it generates a degraded view such as blurred images, we prevent a synthesized view from being blurred by using more cameras in multiview camera configuration. That is, we solve this by applying super-resolution concept which reconstructs a high resolution image from several low resolution images. Therefore, data fusion is executed by geometric warping using a disparity of the multiple images followed by deblur operation. Experimental results show that the image quality can further be improved by reducing blur in comparison with interpolation method.
Journal of Korean Academy of Oral and Maxillofacial Radiology
/
v.26
no.2
/
pp.191-200
/
1996
This study was performed to determine the adequate resolution and compression method in teleradiology. A digital imaging system using Machintosh IT ci computer, 15' Sony high resolution RGB monitor, Umax Power look flatbed scanner with transparency unit and 12 panoramic radiographs were used. The results were as follows : 1. Relative detectability at the group scanned by 30ddpi, 600dpi and 1200dpi was same as those at the real panoramic radiographs. 2. Perceivable image quality degradation was found at the 25% of middle quality of JPEG compression. But those were not diagnostically significant. 3. Perceivable image quality degradation was found at the 100% of low quality of JPEG compression. And 8cases among them were diagnostically significant. On the basis of the above results, it is considered that the adequate resolution in scanning radiographs for teleradiology is 300dpi and compression method is the middle quality of JPEG compression.
The demand for high-resolution images is gradually increasing, whereas many imaging systems yield aliased and undersampled images during image acquisition. In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized Iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for application with multiframe environments. Since the registration error in each low-resolution has a different pattern, the regularization parameters are determined adaptively for each channel. We propose a methods for estimating the regularization parameter automatically. The preposed algorithm are robust against the registration error noise. and they do not require any prior information about the original image or the registration error process. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.5
/
pp.2366-2395
/
2018
Multi-view super-resolution (MVSR) refers to the process of reconstructing a high-resolution (HR) image from a set of low-resolution (LR) images captured from different viewpoints typically by different cameras. These multi-view images are usually obtained by a camera array. In our previous work [1], we super-resolved multi-view LR images via image fusion (IF) and blind deblurring (BD). In this paper, we present a new MVSR method that jointly realizes IF and BD based on an integrated energy function optimization. First, we reformulate the MVSR problem into a multi-channel blind deblurring (MCBD) problem which is easier to be solved than the former. Then the depth map of the desired HR image is calculated. Finally, we solve the MCBD problem, in which the optimization problems with respect to the desired HR image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Experiments on the Multi-view Image Database of the University of Tsukuba and images captured by our own camera array system demonstrate the effectiveness of the proposed method.
Finding texts in general scene images and recognizing their contents is a very important task that can be used as a basis for robot vision, visual assistance, and so on. However, for the low-resolution text images, the degradations, such as noise or blur included in text images, are more noticeable, which leads to severe performance degradation of text recognition accuracy. In this paper, we propose a new Korean text image super-resolution based on a Transformer-based model, which generally shows higher performance than convolutional neural networks. In the experiments, we show that text recognition accuracy for Korean text images can be improved when our proposed text image super-resolution method is used. We also propose a new Korean text image dataset for training our model, which contains massive HR-LR Korean text image pairs.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.1
/
pp.75-80
/
2021
Artificial intelligence is becoming an important part of our lives providing incredible benefits. In this respect, facial expression recognition has been one of the hot topics among computer vision researchers in recent decades. Classifying small dataset of low resolution images requires the development of a new small scale deep CNN model. To do this, we propose a method suitable for small datasets. Compared to the traditional deep CNN models, this model uses only a fraction of the memory in terms of total learnable weights, but it shows very similar results for the FER2013 and FERPlus datasets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.