• Title/Summary/Keyword: Low-resolution image

Search Result 866, Processing Time 0.029 seconds

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Image characteristics of cone beam computed tomography using a CT performance phantom (CT performance phantom을 이용한 cone beam형 전산화단층영상의 특성)

  • Han, Choong-Wan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Purpose: To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Materials and Methods: Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR $9000N^{TM}$ dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. Results: CT number of both PSR $9000N^{TM}$ dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR $9000N^{TM}$ dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR $9000N^{TM}$ dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR $9000N^{TM}$ dental CT system and i-CAT CBCT. Conclusion: CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics.

  • PDF

Vision chip for edge detection with resolution improvement through simplification of unit-pixel circuit (단위 픽셀 회로의 간소화를 통해서 해상도를 향상시킨 이차원 윤곽 검출용 시각칩)

  • Sung, Dong-Kyu;Kong, Jae-Sung;Hyun, Hyo-Young;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • When designing image sensors including a CMOS vision chip for edge detection, resolution is a significant factor to evaluate the performance. It is hard to improve the resolution of a bio-inspired CMOS vision using a resistive network because the vision chip contains many circuits such as a resistive network and several signal processing circuits as well as photocircuits of general image sensors such as CMOS image sensor (CIS). Low resolution restricts the use of the application systems. In this paper, we improve the resolution through layout and circuit optimization. Furthermore, we have designed a printed circuit board using FPGA which controls the vision chip. The vision chip for edge detection has been designed and fabricated by using $0.35{\mu}m$ double-poly four-metal CMOS technology, and its output characteristics have been investigated.

Lossless Frame Memory Compression with Low Complexity based on Block-Buffer Structure for Efficient High Resolution Video Processing (고해상도 영상의 효과적인 처리를 위한 블록 버퍼 기반의 저 복잡도 무손실 프레임 메모리 압축 방법)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.20-25
    • /
    • 2016
  • This study addresses a low complexity and lossless frame memory compression algorithm based on block-buffer structure for efficient high resolution video processing. Our study utilizes the block-based MHT (modified Hadamard transform) for spatial decorrelation and AGR (adaptive Golomb-Rice) coding as an entropy encoding stage to achieve lossless image compression with low complexity and efficient hardware implementation. The MHT contains only adders and 1-bit shift operators. As a result of AGR not requiring additional memory space and memory access operations, AGR is effective for low complexity development. Comprehensive experiments and computational complexity analysis demonstrate that the proposed algorithm accomplishes superior compression performance relative to existing methods, and can be applied to hardware devices without image quality degradation as well as negligible modification of the existing codec structure. Moreover, the proposed method does not require the memory access operation, and thus it can reduce costs for hardware implementation and can be useful for processing high resolution video over Full HD.

Edge detection at subpixel accuracy using fuzzy logic (퍼지 논리를 이용한 Subpixel 정확도 Edge 검출)

  • 김영욱;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.105-108
    • /
    • 1996
  • In this paper, we present an interpolation schema for image resolution enhancement using fuzzy logic. Proposed algorithm can recover both low and high frequency information in image data. In general, interpolation techniques are based on linear operators which are essentially details in the original image. In our fuzzy approach, the operator itself balances the strength of its sharpening and noise suppressing components according to the properties of the input image data. The proposed interpolation algorithm is performed in three step. First logic reasoning is applied to coarsely interpret the high frequency information. These results are combined to obtain the optical output. Using our approach, resolution of the original image can be applied to various kind of image processing topics such as image enhancement, subpixel edge detection, and filtering.

  • PDF

Image Interpolation Using Loss Information Estimation and Its Implementation on Portable Device (손실 정보 추정을 이용한 영상 보간과 휴대용 장치에서의 구현)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.45-50
    • /
    • 2010
  • An image interpolation is a technique to use for enhancement of image resolution, it have two problems which are image quality degradation of the interpolated result image and high computation complexity. In this paper, to solve the problem, we propose an image interpolation algorithm using loss information estimation and implement the proposed method on portable device. From reduction image of obtained low resolution image, the proposed method can computes error to use image interpolated and estimate loss information by interpolation of the computed error. The estimated loss information is added to interpolated high resolution image with weight factor. We verified that the proposed method has improved FSNR as 2dB than conventional algorithms by experiments. Also, we implemented the proposed method on portable device and checked up real-time action. The proposed algorithm may be helpful for various application for image enlargement and reconstruction.

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose reinforced VGG style network structure for low performance embedded system to classify low resolution infrared image. The combination of reinforced VGG style network structure and global average pooling makes lower computational complexity and higher accuracy. The proposed method classify the synthesize image which have 9 class 3,723,328ea images made from OKTAL-SE tool. The reinforced VGG style network structure composed of 4 filters on input and 16 filters on output from max pooling layer shows about 34% lower computational complexity and about 2.4% higher accuracy then the first parameter minimized network structure made for embedded system composed of 8 filters on input and 8 filters on output from max pooling layer. Finally we get 96.1% accuracy model. Additionally we confirmed the about 31% lower inference lead time in ported C code.

Local Block Learning based Super resolution for license plate (번호판 화질 개선을 위한 국부 블록 학습 기반의 초해상도 복원 알고리즘)

  • Shin, Hyun-Hak;Chung, Dae-Sung;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper, we propose a learning based super resolution algorithm using local block for image enhancement of vehicle license plate. Local block is defined as the minimum measure of block size containing the associative information in the image. Proposed method essentially generates appropriate local block sets suitable for various imaging conditions. In particular, local block training set is first constructed as ordered pair between high resolution local block and low resolution local block. We then generate low resolution local block training set of various size and blur conditions for matching to all possible blur condition of vehicle license plates. Finally, we perform association and merging of information to reconstruct into enhanced form of image from training local block sets. Representative experiments demonstrate the effectiveness of the proposed algorithm.

Gender Classification of Low-Resolution Facial Image Based on Pixel Classifier Boosting

  • Ban, Kyu-Dae;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.347-355
    • /
    • 2016
  • In face examinations, gender classification (GC) is one of several fundamental tasks. Recent literature on GC primarily utilizes datasets containing high-resolution images of faces captured in uncontrolled real-world settings. In contrast, there have been few efforts that focus on utilizing low-resolution images of faces in GC. We propose a GC method based on a pixel classifier boosting with modified census transform features. Experiments are conducted using large datasets, such as Labeled Faces in the Wild and The Images of Groups, and standard protocols of GC communities. Experimental results show that, despite using low-resolution facial images that have a 15-pixel inter-ocular distance, the proposed method records a higher classification rate compared to current state-of-the-art GC algorithms.

A high performance disparity extraction algorithm using low resolution disparity histogram (저 해상도 변위 히스토그램을 이용한 고성능 변위정보 추출 알고리듬)

  • 김남규;이광도;김형곤;차균현
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.131-143
    • /
    • 1998
  • This paper presents a high performance disparity extraction algorithm that generate a dense and accurate disparity map using low-resolution disparity histogram. Disparity distribution of background and object areas can besegmented from low-resolution disparity histogram. These information can be used to reduce the search area and search range of the high-resolution image resulting reliable disparity information in high speed. The computationally efficient matching pixel count(MPC) similarity measure technique is useed extensively toremove the redundancies inherent in the area-based matching method, and also results robust matching at the boundary region. Resulting maches are further improved using iterative support algorithm and post processing. We have obtained good results on randomdot stereogram and real images obtained in our carmera system.

  • PDF