• 제목/요약/키워드: Low-pressure

검색결과 7,455건 처리시간 0.034초

우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴 (Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea)

  • 최광용;김준수
    • 대한지리학회지
    • /
    • 제50권1호
    • /
    • pp.1-21
    • /
    • 2015
  • 본 연구에서는 지난 40년 동안(1973~2012)의 우리나라 기상청 산하 61개 지점 일기온 자료와 NCEP/NCAR 재분석 자료를 바탕으로 우리나라 지역별 겨울철 극한저온현상 발생 시 동아시아 영역의 종관 기후 패턴의 특징을 밝히고자 하였다. 일최고기온과 일최저기온 하위 10 퍼센타일 기준으로 정의된 겨울철 극한저온현상은 주로 겨울철 전반기(12월 초순~1월 중순)에 2~7일 간격으로 우리나라 전역 또는 주요 산맥 기준 동서지역으로 구분되어 발생함을 알 수 있다. 해수면기압과 바람벡터 등의 지상 종관 자료 합성장 분석에 따르면 총 13개로 구분되는 우리나라 겨울철 극한저온현상 발생 공간 패턴은 산맥뿐만 아니라 시베리아 고기압과 알류샨 저기압의 상대적인 확장 범위와 강도와 밀접한 관련성이 있음을 알 수 있다. 대류권 중층(500 hPa) 종관기후도 분석에 따르면, 블러킹 형태의 저기압이 상층 찬 공기를 고위도 지역에서 한반도로 이류시킬 때 우리나라에 겨울철 극한저온현상이 발생하기에 적합한 조건이 형성됨을 알 수 있다. 이러한 결과들은 지역규모 이상의 동아시아 겨울철 극한저온현상 예보를 향상시키기 위해 시베리아 고기압, 알류샨 저기압, 상층 블러킹 등의 종관 기후 요소를 모니터링하는 것이 중요함을 가리킨다.

  • PDF

저온환경에서 압력 구조용 강의 피로균열특성 (Fatigue Crack Properties of Pressure Structural Steel at Low Temperature)

  • 최용범;박원조;이광영;허선철;김정호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.146-151
    • /
    • 2001
  • Low temperature fatigue crack propagation ratio and characteristics of the pressure structural steel which is used for the low temperature pressure vessels. Fatigue crack properties was studied at room temperature of $25^{\circ}C$ and low temperature ranges $-60^{\circ}C,\; -80^{\circ}C \;and\; -100^{\circ}C$ with stress ratio of R=0.05, 0.1, 0.3 in the logarithmic relationship between the fatigue crack propagation rate (da/dN) and stress intensity factor $\DeltaK$, in low temperature case the relationship was extend to the range of low crack propagation rate. The fractured specimens were examined by SEM tested. That results showed specimen failed at low temperature exhibit the quasi-cleavage fracture formation, however, considerable ductility proceed final fracture.

  • PDF

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.858-863
    • /
    • 2001
  • In this paper, the test and result of flow and combustion for 21AFR lean fuel models are described. The necessity to develop the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of new designed 21AFR lean modules, the hydraulic tests in stereo lithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a results of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1. The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

  • PDF

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

압축착화 엔진에서 분사압이 저온연소에 미치는 영향 (Effect of Injection Pressure on Low Temperature Combustion in CI Engines)

  • 장재훈;이선엽;이용규;오승묵;이기형
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측 (Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure)

  • 한영민;김종규;이광진;임병직;서성현;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.66-70
    • /
    • 2010
  • 우주발사체용 75톤급 액체로켓엔진 연소기의 저압연소시험에서 얻은 데이터를 기본으로 75톤급 연소기의 연소특성속도 및 비추력을 예측하였다. 75톤급 연소기 저압연소시험에서 연소특성속도는 약 1750 m/sec, 비추력은 240 sec로 30톤급 연소기의 저압 성능보다 높은 값을 보여주었다. 30톤급 연소기의 연소시험에서 얻은 저압/고압 관계식을 통해 75톤급 연소기의 설계점에서 연소특성속도는 약 1770 m/sec, 비추력은 약 278 sec로 목표치를 상회하는 값을 예측하였다.

  • PDF

미세입자 측정용 간이형 3단 전기적 저압 임펙터의 설계 및 성능평가 (Design and Performance Evaluation of a Portable 3-Stage Electrical Low Pressure Impactor(P-ELI) for Measurements of Submicron Aerosol)

  • 조명훈;지준호;박동호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.826-833
    • /
    • 2004
  • Cascade impactors are widely used to collect size classified aerosol. A major disadvantage of this instrument is the required long sampling time. Electrical low pressure impactor has been developed to overcome this disadvantage and to achieve real-time measurements on the particle size distribution. The instrument consists primarily of a corona charger, low pressure cascade impactor and multi channel electrometer. We designed and evaluated the performance of a potable 3-stage low pressure impactor using an electrical method. For the calibration of the impactor, monodispersed particles were generated using evaporation-condensation method followed by electrostatic classification using a DMA(Differential Mobility Analyzer). The collection efficiency curves of the stages can be determined by analysing the fraction of particles collected by each stage.

생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브 (A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue)

  • 여창민;박정환;손태윤;이용흠;정병조
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권1호
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.