• Title/Summary/Keyword: Low-power Technique

Search Result 1,169, Processing Time 0.037 seconds

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

A Design of 8bit 10MS/s Low Power Pipelined ADC (저전력 8비트 10MS/s 파이프라인 ADC 설계)

  • Bae, Sung-Hoon;Lim, Shin-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.606-608
    • /
    • 2006
  • This paper describes a 8bit 10MS/s low power pipelined analog-to-digital converter(ADC). To reduce power consumption in proposed ADC, a high gain op-amp that consumes large power in MDAC(multiplying DAC) of conventional pipelined ADC is replaced with simple comparator and current sources. Moreover, differential charge transfer amplifier technique with latch in the sub-ADC reduces the power consumption to less than half compared with the conventional sub-ADC which use high speed comparator. The proposed ADC shows the power consumption of 1.8mW at supply voltage of 1.8V. This proposed ADC is suitable to apply to the portable display device. The circuit was implemented with 0.18um CMOS technology and the core size of circuit is 2.5mm${\times}$1mm.

  • PDF

Power-conscious high level synthesis using loop folding (루프의 중첩을 이용한 저전력 상위 수준 합성)

  • 김대홍;최기영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.1-10
    • /
    • 1997
  • By considering low power design at higher levels of abstraction rather than at lower levels of abstraction, we can apply various transformation techniques to a system design with wider view and obtain much more effective power reduction with less cost and effort. In this paper, a transformation technique, called power - conscious loop folding is proposed for high level synthesis of a low power system.Our work is focused on reducing the power consumed by functional units in adata path dominated circuit through the decrease of switching activity. Te transformation algorithm has been implemented and integrated into HYPER, a high level synthesis system for experiments. In our experiments, we could achieve a pwoer reduction of up to 50% for data path dominated circuits.

  • PDF

The High efficiency Buck Power Conversion System for Photovoltaic Power Generator (태양광발전을 위한 고효율 승압형 전력변환장치)

  • 박경원;김영철;김준홍;서기영;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-92
    • /
    • 1997
  • Power conversion system must be increased swiching frequency in order to achieve a small size, a light weight and a low noise, However, the swiches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft swiching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor suing step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as if makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional cirvuit. The result is the the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

A study for the design of data-acquisition system and the reduction of power consumption (데이터 취득 시스템 설계 및 소모 전력 감소에 관한 연구)

  • Kim, Do-Hun;Lee, Yong-Jea;Kim, Yong-Sang;Yim, Sang-Uk;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2705-2707
    • /
    • 2003
  • Over the past several years, the application extent of the real-time systems is being expanded with the progress of civilization. An effort to minimize power consumption at the system is being accomplished in several fields from the design of an analog/digital circuit up to the device level. Things of this effort have included the power optimum-technique to minimize power consumption at the digital logic circuit and the dynamic managed skill by means of the decision of the operating system. In this paper, we designed of low power system by using power-optimized method. As an effective low-power design, we designed the low power system which it has a monitoring system within the main board and a personal computer.

  • PDF

Task Scheduling Technique for Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크 환경에서의 에너지 효율성을 고려한 태스크 스케줄링 기법)

  • Lee Jin-Ho;Choi Hoon;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.884-891
    • /
    • 2006
  • A wireless sensor node is typically battery operated and energy constrained. Therefore it is critical to design efficient power management technique and scheduling technique. In this paper, we propose an OS-level power management technique for energy saving of wireless sensor node, it is called EA-SENTAS (Energy-Aware Sensor Node TAsk Scheduling). It can decrease the energy consumption of a wireless sensor node to use task scheduling technique that shut down components or use low power mode of each component when not needed. Simulation results show that EA-SENTAS saves energy up to 56 percent to compare with conventional duty cycle.

A Low Power UART Design by Using Clock-gating (클록 게이팅을 이용한 저전력 UART 설계)

  • Oh, Tae-Young;Song, Sung-Wan;Kim, Hi-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents a Clock-gating technique that reduces power dissipation of the sequential circuits in the system. The Master Clock of a Clock-gating technique is formed by a quaternary variable. It uses the covering relationship between the triggering transition of the clock and the active cycles of various flip-flops to generate a slave clock for each flip-flop in the circuit. At current RTL designs flip-flop is acted by Master clock's triggering but the Slave Clock of Clock-gating technique doesn't occur trigger when external input conditions have not matched with a condition of logic table. We have applied our clocking technique to UART controller of 8bit microprocess

  • PDF

A Soft-Switching Technique of Matrix Converters using Auxiliary Switch (보조스위치를 이용한 매트릭스 컨버터(Matrix Converter)의 소프트스위칭 기법)

  • Um, Tae-Wook;Kim, Yoon-Ho;Kim, Seung-Mo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.519-524
    • /
    • 2002
  • This paper presents a soft-switching technique of single-stage power conversion Matrix Converter of AC-AC converters. Conventional hard-switching method is limited to operate at low switching frequency due to increased switching loss. In this paper, by additional auxiliary switch circuits, it is shown that the main switch of the matrix converter operate as a zero-voltage switches, and the auxiliary switch operate as a zero current switch. Finally, the soft-switching technique with auxiliary switches is compared with conventional hard-switching technique, and Is analyzed by simulation.

  • PDF

Controlled-Type ZVS Technique without Auxiliary Components for Micro-inverters

  • Zhang, Qian;Zhang, Dehua;Hu, Haibing;Shen, John;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.919-927
    • /
    • 2013
  • This paper proposes a Boundary Current Mode (BCM) control scheme to realize soft switching on a conventional single phase full bridge DC/AC inverter. This technique with the advantages of no auxiliary components, low cost, high efficiency, and simple in control, is attractive for micro-inverter applications. The operation principle and characteristic waveforms of the proposed soft switching technique are analyzed in theory. A digital controller is provided based on that theory. To balance the requirements of efficiency, switching frequency, and inductor size, the design considerations are discussed in detail to guide in BCM inverter construction. A 150W prototype is built under these guidelines to implement the BCM control scheme. Simulation and experiment results demonstrate the feasibilities of the proposed soft switching technique.

A Study on the Piezoelectric Energy Harvesting Using SSHI Technique (SSHI 기법을 이용한 압전소자로부터의 에너지 회수에 대한 연구)

  • Nam, Yoon-Su;Park, Jong-Soo;Park, Hae-Gyoon;Lee, Jae-Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.92-98
    • /
    • 2008
  • The target of this paper is to study on the usefulness of the SSHI technique as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. A mechanical motion vibrator supplies piezoelectric material with mechanical energy. An optical fiber sensor and a pulse generating circuit are used to accomplish the parallel-SSHI technique. As a result of this study, energy harvesting using SSHI technique results in a significant increase of the electrical power flow.