• Title/Summary/Keyword: Low-k materials

Search Result 8,597, Processing Time 0.035 seconds

A Study on Feasibility of Hexagonal Phase ZnS:$Mn^{2+}$ Phosphor for Low-voltage Display Applications

  • Shin, Sang-Hoon;Lee, Sang-Hyuk;You, Yong-Chan;Jung, Joa-Young;Park, Chang-Won;Chang, Dong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.815-818
    • /
    • 2002
  • Mn doped hexagonal phase of ZnS has been studied as a yellow-orange phosphor for the application to fluorescent displays operated at low voltages. It was found that luminescence from $Mn^{2+}$ was increased as the Mn concentration was increased up to1.2 mol% of host lattice. This study has been attempted by adding trivalent ions such as $Al^{3+}$ or $Bi^{3+}$ to ZnS:Mn as an agent to do the efficient incorporation of Mn ions into ZnS:Mn lattice, resulting in a significant improvement in the phosphor performance, especially at low voltages.

  • PDF

Low Hysteresis Organic Thin Film Transistors with Modified Photocrosslinkable Poly (4-vinylphenol)

  • Kim, Doo-Hyun;Kim, Hyoung-Jin;Kim, Byung-Uk;Kim, We-Yong;Kim, Ho-Jin;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.563-565
    • /
    • 2009
  • We introduce the new modification approaches of photocrosslinkable poly (4-vinylphenol) (PVP) for low hysteresis organic thin film transistors (OTFTs). The dielectric layers were composed of different PVP resin, low molecular melamine, and halogen free photo-initiator. The low hysteresis OTFT from one of the organic gate dielectrics has been realized. The electrical performance of low hysteresis OTFT with photocrosslinkable PVP exhibited a field-effect mobility of 0.2 cm2/Vs, a threshold voltage of - 0.04V, hysteresis of 0.4V.

  • PDF

Low temperature growth of GaN on sapphire using remote plasma enhanced-ultrahigh vacuum chemical vapor deposition

  • Park, J.S.;Kim, M.H.;Lee, S.N.;Kim, K.K.;Yi, M.S.;Noh, D.Y.;Kim, H.G.;Park, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.85-99
    • /
    • 1998
  • A ultrahigh vacuum chemical vapor deposition(UHVCVD)/metalorganic chemical vapor deposition(MOMBE) system equipped with a radio frequency(RF)-plasma cell was employed to grow GaN layer on the sapphire at a low temperature. The x-ray photoelectron spectroscopy analysis of nitrogen composition on the nitridated sapphite surface indicated that a nitridation process is mostly affected by the RF power at low temperature. Atomic force microscope images of nitridated surface the protrusion density on the nitridated sapphire is dependent on the nitridation temperature. The crystallinity of GaN grown at $450^{\circ}C$ was found to be much improved when the sapphire was nitridated at low temperature prior to the GaN layer growth. Moreover, a strong photoluminescence spectrum of GaN grown by UHVCVD/MOMBE with a rf-nitrogen plasma was observed for the first time at room temperature.

  • PDF

Preparation and Characterization of Low k Thin Film using a Preceramic Polymer (Preceramic Polymer를 이용한 저유전박막 제조 및 특성 분석)

  • Kim, Jung-Ju;Lee, Jung-Hyun;Lee, Yoon-Joo;Kwon, Woo-Teck;Kim, Soo-Ryong;Choi, Doo-Jin;Kim, Hyung-Sun;Kim, Young-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.499-503
    • /
    • 2011
  • Recently, variety of organic and inorganic hybrid materials have recently investigated as alternative routes to SiOC, $SiO_2$ thin film formation at low temperatures for applications in electronic ceramics. Specially, silicon based polymers, such as polycarbosilane, polysilane and polysilazane derivatives have been studied for use in electronic ceramics and have been applied as dielectric or insulating materials. In this study, Polycarbosilane(PCS), which Si-$CH_2$-Si bonds build up the backbone of the polymer, has been investigated as low-k materials using a solution process. After heat treatment at 350$^{\circ}C$ under $N_2$ atmosphere, chemical composition and dielectric constant of the thin film were $SiO_{0.27}C_{1.94}$ and 1.2, respectively. Mechanical property measured using nanoindentor shows 1.37 GPa.

Warpage of Co-fired High K/Low K LTCC Substrate (고유전율/저유전율 LTCC 동시소성 기판의 휨 현상)

  • Cho, Hyun-Min;Kim, Hyeong-Joon;Lee, Chung-Seok;Bang, Kyu-Seok;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.77-82
    • /
    • 2004
  • In this paper, warpages of heterogeneous LTCC substrates comprised of high K/low K hi-layered structure were investigated. The effect of glass content in high K LTCC layer on the warpage of substrate during co-firing process was examined. Shrinkage and dielectric properties of high K and low K green sheets were measured. In-situ camber observation by hot stage microscopy showed different camber development of heterogeneous LTCC substrates according to glass content in high K green sheet. High K green sheet containing $50\%$ glass was matched to low K green sheet in the shrinkage. Therefore, LTCC substrate of Low K/High K+$50\%$ glass structure showed flat surface after sintering.

  • PDF

Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas (저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션)

  • Shon, Chae-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.