• 제목/요약/키워드: Low-flow channel

검색결과 351건 처리시간 0.027초

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Large scale Gravitational SPLITT Fractionation (GSF)에서의 시료 throughput에 관한 연구 (Investigation on sample throughput of large scale splitter-less gravitational SPLITT fractionation (GSF))

  • 최효재;김운중;음철헌;이승호
    • 분석과학
    • /
    • 제26권1호
    • /
    • pp.34-41
    • /
    • 2013
  • SPLITT Fractionation (SF)는 콜로이드 입자 및 거대분자들을 둘 혹은 그 이상의 부분(fraction)으로 분획하는 기술이다. SF에서는 시료를 지속적으로 주입하므로 대용량 분획이 가능하다. 일반적으로, SF에서는 얇은 리본모양의 채널을 이용하는데, 채널의 입구와 출구부분에는 각각 flow stream splitter가 설치되어 있어서 채널의 입구와 출구가 위 아래로 두 개씩 존재한다. SF에는 두 가지 작동방법이 있는데, 하나는 conventional mode 이고 다른 하나는 전액 공급 모드(full feed mode, FFD)이다. FFD 모드에서의 분리도는 conventional mode 에 비해 떨어지지만, FFD 모드에는 몇 가지 독특한 장점이 있다. FFD 모드에서는 용매의 주입이 필요하지 않으므로 채널의 디자인 이나 작동이 더 간단하다. 따라서 입구 쪽에 flow stream splitter를 필요로 하지 않으며, 시료와 용매를 주입하기 위하여 두 개의 펌프가 필요한 conventional 모드와는 달리 한 개의 펌프만으로 작동이 가능하다. 또한 용매의 주입이 없으므로 시료가 희석되지 않는다. 이는 환경시료와 같이 콜로이드의 농도가 낮은 시료를 분획하고자 하는 경우 유리하다. 농도가 낮은 환경시료의 분획을 위해서는 종종 농축이 필요하다. 본 연구에서는 입구에는 물론 출구에도 splitter를 사용하지 않는 새로운 대용량 FFD 모드 SF 장치를 만들었다. Splitter가 없으므로 장치를 대형화 할 수 있어서 시료처리량(throughput, TP)을 크게 증가시킬 수 있었다. 산업용 폴리우레탄(polyurethane, PU) 라텍스 입자들을 이용하여 새로운 SF 장치를 테스트하였으며, 폴리아크릴레이트(polyacrylate, PA) 입자를 대상으로 새로운 SF 장치의 TP를 확인하기 위하여 유속 및 $d_c$에 따르는 TP의 변화를 조사하였다.

ICP 식각 시스템에 의한 초전도 스트립 라인의 임계 특성 분석 (Analysis of the Critical Characteristics in the Superconducting Strip Lines by ICP Etching System)

  • 고석철;강형곤;최효상;양성채;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.782-787
    • /
    • 2004
  • Superconducting flux flow transistor (SFFT) is based on a control of the Abrikosov vortex flowing along a channel. The induced voltage by moving of the Abrikosov vortex in an SFFT is greatly affected by the thickness, the width, and the length of channel. In order to fabricate a reproducible channel in the SFFT, we studied the variation of the critical characteristics of ${YBa}_2{Cu}_3{O}_7-\delta(YBCO)$ thin films with the etching time using ICP (Inductively coupled plasma) system. From the simulation, it was certified that the vortex velocity was increased in a low pinning energy at channel width 0,5 mm. The surfaces of YBCO thin film were etched by ICP etching system. We observed the etched channel surfaces by AFM (Atomic Force Microscope) and measured the critical current density with etching time. As a measured results, the etching thickness of channel should be optimized to fabricated a flux flow transistor with specified characteristics.

Measurement of Heat Transfer Coefficient in Dimpled Channel: Effect of Dimple Arrangement and Channel Height

  • Lee, K.S.;Shin, S.M.;Park, S.D.;Kwak, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated and the diameter and depth of dimple was 16mm and 4mm, respectively. Two channel heights of about 0.6 and 1.2 time of the dimple diameter, two dimple configuration were tested. The Reynolds numbers based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With same dimple arrangement, the heat transfer coefficients and the thermal performance factor were higher for the lower channel height. As the distance between dimples became smaller, the overall heat transfer coefficient and the thermal performance factor were increased.

  • PDF

개수로형 재생펌프의 특성해석에 관한 연구 (Performance Characteristic Analysis for Open Channel Type Regenerative Pump)

  • 신동윤;최창호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.46-53
    • /
    • 2007
  • An improved performance characteristics analysis model of a regenerative pump is proposed in the present paper. For its low characteristic speed, a regenerative pump generates high head with low flow rate. However, the efficiency is fairly low due to the skin friction between impeller and casing. Also, the complexity of its internal flow pattern makes prediction of performance characteristics difficult. In the present research, a one-dimensional analysis model was improved with consideration of disc friction loss, minor loss, and modified flow length, and the result was proven to be close in range with the results from experiments.

갈수기(渴水期) 하천(河川)에서의 오염물질(汚染物質)의 확산(擴散) 및 이동(移動) (Low Flow Pollutant Transport in Natural Rivers)

  • 서일원
    • 상하수도학회지
    • /
    • 제7권1호
    • /
    • pp.29-36
    • /
    • 1993
  • The complex nature of low flow mixing in natural channels has been investigated using both laboratory experiments and the numerical solution of a proposed mathematical model that is based on a set of mass balance equations describing the mixing and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted in a model of four pool and riffle sequences in a 49-m long tilting flume. The experimental results show that flow over the model pool-riffle sequences is highly non-uniform. Concentration-time curves are significantly skewed with long tails. Comparison between measured and predicted concentration-time curves shows good agreement in the general shape, peak concentration and time to peak. The proposed model shows significant improvement over the conventional one-dimensional dispersion model in predicting natural mixing processes in open channels under low flow conditions through pools and riffles.

  • PDF

MF증발기 채널관 주위의 결빙현상에 대한 해석적 연구 (Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator)

  • 박용석;성홍석;서정세
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.114-120
    • /
    • 2020
  • In this study, the process of freezing around two consecutively arranged channel tubes used for evaporator heat exchange was numerically investigated. Numerical results confirmed that the vortex occurred between the front channel and the rear channel and also that the vortex occurred due to the rapid change of the channel at the rear of the rear channel. These vortices were found to play a role in reducing the ice layer to some extent by the growth of the ice layer at the front and rear of the channel tube. The freezing layer showed a tendency to gradually increase as it passed through the channel pipe. As the wall temperature in the channel pipe decreased, the thickness of the freezing layer increased. As the flow rate of water slowed, the thickness of the freezing layer became thicker. In particular, in the case of a slow flow rate of 0.03 m/s, the freezing layers of the front channel pipe and the rear channel pipe were connected to each other. The narrower the channel, the thinner the freezing layer was in both the front and rear channel tubes. It is found that these thin freezing layers are caused by the low thickness of the temperature boundary layer formed around the channel tube.

가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향 (The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell)

  • 조중원;안은진;이승보;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

모델화한 비대칭형 막기공에서 뉴톤 유체의 속도분포에 관한 이론해석 (Theoretical Analysis on the Velocity Profile of Newtonian Fluids within Modelled Asymmetric Membrane Pores)

  • 전명석;김재진
    • 멤브레인
    • /
    • 제7권3호
    • /
    • pp.142-149
    • /
    • 1997
  • 비대칭형 막기공을 통한 뉴톤 유체의 발산흐름(diverging flow)에 대한 심도있는 해석 결과를 제시하였다. 막기공 모델의 일반적 형태인 슬릿(slit)과 원뿔(cone)형 채널에 대해 미동흐름(creeping flow)을 적용하여 유속분포 관계식을 구하였다. 유속분포의 고찰로부터 발산각도 $\alpha$$\longrightarrow$0 인 경우는 윤활근사법(lubrication approximation)이 적용되어 Poiseuille 흐름으로 되는 것을 확인하였고, 발산각도가 증가할수록 벽면부근에서의 유속분포는 결핍(depletion)됨과 아울러 전체유속은 감소하였다. 구해진 속도분포와 압력분포의 관계식으로부터 투과유량에 대한 이론식을 도출하였다. 예측된 결과는 기공의 비대칭성이 증가할수록 그에 따른 투과유량은 점차 증가하는 거동을 보였다. 본 연구의 이론결과는 궁극적으로 막여과에의 응용 측면과 밀접하게 연관되어 있다.

  • PDF

방류수 유량계(전자기유량계, 파샬플룸)의 특성평가 연구 (A Study on Comparison of the Characteristic Test of Discharge Water Flowmeters (Electromagnetic Flowmeter, Parshall Flume))

  • 안양기;김지영;김금희;장희수;정정필;최종우
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.57-62
    • /
    • 2015
  • The test of comparing liquid flow calibration system (approved by KOLAS) for accuracy and structure change test was performed in the test bed in order to evaluate the typical characteristics of the electromagnetic flow meters and parshall flume that are generally used in the water discharging facilities. The results of the accuracy comparing test with liquid flow calibration system showed the error of less than 2%. Pharshall plume got error up to -8.3% (low flow) from the flow rate test, but less than 4% from the accumulated flow test because of offset error at high flow rate and low flow rate. Evaluation of structual change test was tested with only parshall flume using structure and it consisted of installation angle (parshall flume and level sensor) and position change. Installation angle, water level sensor angle and position changing test for parshall flume had errors of 3.1%~-9.2%, 0.4%~-5.6% and 0.2%~1.3% respectively. Especially, the error showed the largest increase when the water level sensor measured the point of decreased flow by the structure change. Therefore, error factors (change of straight pipe length, installation of obstacle or effect of foreign substances on water level sensor) that can often occur in the field should be derived and the research for optimized installation method should be carried out continuously.