• Title/Summary/Keyword: Low-flow

Search Result 6,290, Processing Time 0.034 seconds

The Effects of Flow Wave form on the Flow Characteristics in Tapered Vascular Grafts (유량 파형이 데이퍼형 인조혈관 유동에 미치는 영향)

  • Lee, H. C.;Seok, K. W.;Jon, C. W.;Lee, J.;Lee, Y. S.;Kim, S. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.337-346
    • /
    • 1996
  • The patency of small size vascular grafts is poor, and the blood flow characteristics in the artery graft anastomosis are suspected as one of the important factors influencing intimal hyperplasia. Disturbed flow patterns caused by sixte and compliance mismatch generate unfavorable flow environment which promotes intimal thickening. Tapered vascular yuts are suggested in order to reduce sudden expansion near the anastomosis. The photochromic flow visualization method is used to measure the flout fields in the end-to-end anastomosis model under the carotid and femoral artery flow wave form. The results show that flow disturbance near the anastomosis is diminished in the tapered grafts comparing to the tubular graft. As the divergent ang1e decreases, we can reduce the low and oscillatory wall shear stress zone which is prone to intimal hyperplasia. The flow wave form effects the wall shear rate dis- tribution significantly. The steep deceleration and back flow in the femoral flow wAve form cause low mean wall shear rate and high oscillatory shear index.

  • PDF

Impacts of Two Types of El Niño on Hydrologic Variability in Annual Maximum Flow and Low Flow in the Han River Basin (두 가지 El Niño 형태에 따른 한강 유역의 연최대홍수량 및 저유량의 변화 분석)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.969-981
    • /
    • 2012
  • In this study, we analysed hydrologic variability in quantity and onset of annual maximum flow and low flow by impacts of the different phases of ENSO (El Ni$\tilde{n}$o Southern Oscillation) over the Han River Basin. The results show that annual maximum flow has increased statistically significant about 48.3% of all over the watershed. The onset of annual maximum flow was delayed in the west of the Han River basins and in the east of the basins was likely to be rapid onset. Also, this study shows that 7-day low flow was deceased statistically significant about 26.0% of the total area in the Han River Basin, and onset of 7-day low flow tends to be faster in the upper-middle basins of the Han River. The onset of annual maximum flow shows similar pattern during the CT (Cold tongue)/WP (Warm-pool) El Ni$\tilde{n}$o years, but annual maximum flow appeared less in 89.0% of all basins during the CT El Ni$\tilde{n}$o years. In addition, the onset of 7-day low flow tended to be faster about 17 days on average during the WP El Ni$\tilde{n}$o years, and 72.7% of the basins show significant increase during the CT El Ni$\tilde{n}$o years. Consequently, it was found that the different phases of CT/WP El Ni$\tilde{n}$o have effects on sensitivity to variability in quantity and onset of water resources over the Han River Basin. We expect that the present diagnostic study on hydrological variability during different phases of ENSO will provide useful information for long-term prediction and water resources management.

Ignition Test of an Oxidizer Rich Preburner (산화제과잉 예연소기 점화시험)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Jeon, Jae-Hyoung;Lee, Seon-Mi;Hong, Moon-Geun;Ha, Seong-Up;Kang, Sang-Hun;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.869-872
    • /
    • 2011
  • Ignition tests of an oxidizer rich preburner for a staged combustion cycle liquid rocket engine were performed to evaluate combustion performance. Design operation conditions of the tested oxidizer rich preburner are about 60 of OF ratio and 20 MPa of combustion pressure. The entire kerosene and some LOx injected into the mixing head is burned in combustion chamber and the remaining LOx injected through center holes of combustion chamber is vaporized. Full flow ignition method with hypergolic fuel was used. Each propellant was supplied in two stages for soft ignition. Test results, low frequency oscillation was occurred in low flow rate conditions under 45% of design flow rate. Stable ignition in the course of design combustion pressure was able to induce by minimization of low flow rate ignition region to escape low frequency oscillation.

  • PDF

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.

Low-Flow Frequency Analysis and Drought Outlook in Water Districts Under Climate Change Scenarios : A Case Study of Gimcheon-si, Korea (기후변화 시나리오에 따른 용수구역 기반 소구역의 가뭄전망 및 갈수빈도해석 : 김천시 지역을 중심으로)

  • Kim, Jieun;Lee, Baesung;Yoo, Jiyoung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2021
  • Increase of climate variability due to climate change has paved the way for regional drought monitoring and outlook. In particular, Gimcheon-si, Gyeongsangbuk-do, is suffering from frequent and periodic drought damage as the frequency and magnitude of drought are increasing due to climate change. For this reason, it is necessary to analyze drought characteristics for sub-districts based on water district and calculate the basic low-flow considering climate change. In this study, meteorological and hydrological drought outlook were carried out for 8 sub-districts considering the water supply system and regional characteristics of Gimcheon-si according to various climate change scenarios. In addition, the low-flow frequency analysis for the near future was also performed using the total amount of runoff and the low-flow. The overall results indicated that, meteorological droughts were found to be dangerous in the S0(1974~2019) period and hydrological droughts would be dangerous in the S2(2041~2070) period for RCP 4.5 and in S3(2071~2099) period for RCP 8.5. The results of low-flow frequency analysis indicated that future runoff would increase but drought magnitude and frequency would increase further. The results and methodology may be useful for preparing local governments' drought measures and design standards for local water resources facilities.

Studies on the Regional Cerebral Blood Flow in Delayed Carbon Monoxide sequelae using $^{99m}Tc-HMPAO$ (지연성 일산화탄소중독후유증 환자에서 $^{99m}Tc-HMPAO$를 이용한 국소 뇌혈류량의 SPECT소견)

  • Ahn, Jae-Hoon;Lee, Do-Yun;Kim, Jin-Soo;Suh, Jung-Ho;Kim, Dong-Ik;Lee, Myung-Sik;Chung, Tae-Sub;Park, Chan-H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.22 no.2
    • /
    • pp.163-170
    • /
    • 1988
  • 8 patients of delayed CO sequelae were evaluated using Brain CT and $^{99m}Tc-HMPAO$ SPECT. The results were as follows; 1) CT findings of delayed CO sequleae were bilateral low density lesion in globus pallidus (l pt.), diffuse low density in white matter with bilateral low density in white matter (l pt.), diffuse low density in white matter with bilateral low density in globus pallidus (l pt.), diffuse low density in white matter with cortical atrophy (l pt.), bilateral low density in globus pallidus and diffuse low density in white matter with cortical atrophy (l pt.) and normal in 3 pts. 2) $^{99m}Tc-HMPAO$ Brain SPECT findings of delayed CO sequelae were decreased regional cerebral blood flow (rCBF) in frontal (1 among 8 pts.), frontal and basal ganglia (3 among 8 pts.), and diffuse patch decreased rCBF pattern (4 among 8 pts.) 3) $^{99m}Tc-HMPAO$ Brain SPECT study was well correlated with neurologic symptoms and signs in delayed CO sequelae. Our results may suggest that reduced cerebral blood flow contributes to the development of delayed CO sequelae.

  • PDF

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

Development of a Low-cost Industrial OCR System with an End-to-end Deep Learning Technology

  • Subedi, Bharat;Yunusov, Jahongir;Gaybulayev, Abdulaziz;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • Optical character recognition (OCR) has been studied for decades because it is very useful in a variety of places. Nowadays, OCR's performance has improved significantly due to outstanding deep learning technology. Thus, there is an increasing demand for commercial-grade but affordable OCR systems. We have developed a low-cost, high-performance OCR system for the industry with the cheapest embedded developer kit that supports GPU acceleration. To achieve high accuracy for industrial use on limited computing resources, we chose a state-of-the-art text recognition algorithm that uses an end-to-end deep learning network as a baseline model. The model was then improved by replacing the feature extraction network with the best one suited to our conditions. Among the various candidate networks, EfficientNet-B3 has shown the best performance: excellent recognition accuracy with relatively low memory consumption. Besides, we have optimized the model written in TensorFlow's Python API using TensorFlow-TensorRT integration and TensorFlow's C++ API, respectively.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.