• Title/Summary/Keyword: Low-flow

Search Result 6,290, Processing Time 0.065 seconds

A Numerical Analysis on Flow Characteristic of 200HP Grade Water Jet for Small Ship (소형선박용 200마력급 Water Jet의 유동특성에 관한 수치해석)

  • Yi, Chung-Seob;Jeong, Jae-Hoon;Lee, Jong-Su;Yun, Ji-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.150-155
    • /
    • 2012
  • Water jet propulsion system has low efficiency than screw propeller at low speed, but has been applied in high speed ship due to its better cavitation performance and high rotation capacity. In this study, a numerical analysis was conduct to understand the flow in the propulsion system of 200HP grade water jet for small ship. As the result, it could be confirmed that total pressure and force of the flow was increased through the impeller and the straight-ability of discharging flow to outlet was improved by guide vane. Also, the reliability of numerical analysis was secured by comparing peripheral velocity calculated by design values with that calculated by numerical analysis.

Flow Condensation Inside Mini-Channels (I) -Development of New Experimental Technique- (작은 유로 내에서의 흐름응축 열전달 (I) -새로운 실험기법의 개발 -)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1424-1431
    • /
    • 2004
  • With traditional experimental methods such as the secondary fluid (e.g., water) calorimetric method, it is very difficult to accurately test the local condensation heat transfer inside mini-channels. Hence, there are large discrepancies between the results of previous studies. The experimental methods as well as unidentified sources of uncertainties could be reasons for such discrepancies. In this study, innovative experimental techniques were developed to measure the in-tube condensation heat transfer coefficient. With these techniques, very low heat dissipation rates such as several watts from the mini-channel could be estimated and low mass flow rates below the 0.1 ㎏/h could be measured with reasonable uncertainties. To the authors' knowledge, these techniques provide a unique experimental apparatus for measuring the condensation heat transfer coefficients inside the sub-millimeter hydraulic diameter single channels.

Study on flow variability of Korean multi-purpose dams associated with tropical cyclones effects (태풍 영향을 고려한 한반도 다목적댐의 흐름 변동성에 관한 연구)

  • Kang, Ho Yeong;Kim, Jong Suk;Park, Kyeong Mi;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.315-315
    • /
    • 2016
  • 최근 증가하고 있는 수자원의 지속가능성과 수생태계의 복원력 향상에 대한 관심을 반영하여 한반도 8개 다목적댐에 대하여 일유입량, 태풍과 비태풍 강우의 영향을 고려하여 수문학적 거동 특성을 분석하였다. The annual maximum flow(AMF) 와 7-day low flow의 분석결과를 기반으로 극치사상에 대하여 수문학적 인자(magnitude, timing, duration, and frequency)의 경향성분석을 수행하였다. AMF 분석결과, 충주댐, 소양강댐은 봄과 초여름 유입량의 감소경향을 보였다. 섬진강댐 유역은 태풍강우에 가장 민감한 유역이며 빈도와 지속기간에 대하여 통계적으로 유의한 증가 경향을 보였다. 7-day Low Flow 분석결과, 충주댐과 안동댐은 겨울철 유입량에 대하여 감소추세를 보이고 있지만, 태풍의 영향은 잘 나타나지 않는다. 본 연구는 8개 다목적댐 유역의 극치사상과 관련된 다양한 수문학적 변화에 대한 연구를 수행함으로서 유역의 흐름 패턴과 관련된 인과관계를 설명하고, 유역 맞춤형 중 장기 수자원 공급을 위한 기초자료를 제공할 것으로 기대된다.

  • PDF

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW (저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율)

  • An, Sang-Joon;Choi, Jong-Hyeok;Maeng, Joo-Sung;Han, Cheol-Heui
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

The Impact of COVID-19, Day-of-the-Week Effect, and Information Flows on Bitcoin's Return and Volatility

  • LIU, Ying Sing;LEE, Liza
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.45-53
    • /
    • 2020
  • Past literatures have not studied the impact of real-world events or information on the return and volatility of virtual currencies, particularly on the COVID-19 event, day-of-the-week effect, daily high-low price spreads and information flow rate. The study uses the ARMA-GARCH model to capture Bitcoin's return and conditional volatility, and explores the impact of information flow rate on conditional volatility in the Bitcoin market based on the Mixture Distribution Hypothesis (Clark, 1973). There were 3,064 samples collected during the period from 1st of January 2012 to 20th April, 2020. Empirical results show that in the Bitcoin market, a daily high-low price spread has a significant inverse relationship for daily return, and information flow rate has a significant positive relationship for condition volatility. The study supports a significant negative relationship between information asymmetry and daily return, and there is a significant positive relationship between daily trading volume and condition volatility. When Bitcoin trades on Saturday & Sunday, there is a significant reverse relationship for conditional volatility and there exists a day-of-the-week volatility effect. Under the impact of COVID-19 event, Bitcoin's condition volatility has increased significantly, indicating the risk of price changes. Finally, the Bitcoin's return has no impact on COVID-19 events and holidays (Saturday & Sunday).