• Title/Summary/Keyword: Low-energy System

Search Result 3,402, Processing Time 0.032 seconds

Exergy Analysis of Regenerative Ammonia-Water Rankine Cycle for Use of Low-Temperature Heat Source (저온열원 활용을 위한 암모니아-물 재생 랭킨사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Rankine cycle using ammonia-water mixture as a working fluid has attracted much attention, since it may be a very useful device to extract power from low-temperature heat source. In this work, the thermodynamic performance of regenerative ammonia-water Rankine cycle is thoroughly investigated based on the second law of thermodynamics and exergy analysis, when the energy source is low-temperature heat source in the form of sensible energy. In analyzing the power cycle, several key system parameters such as ammonia mass concentration in the mixture and turbine inlet pressure are studied to examine their effects on the system performance including exergy destructions or anergies of system components, efficiencies based on the first and second laws of thermodynamics. The results show that as the ammonia concentration increases, exergy exhaust increases but exergy destruction at the heat exchanger increases. The second-law efficiency has an optimum value with respect to the ammonia concentration.

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

A Study on Energy Storage System for Low Carbon, Green Growth of Electric Railway System (전기철도시스템의 저탄소 녹색성장을 위한 에너지저장시스템에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1161_1162
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and $CO_2$ emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut $CO_2$ to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. Therefore, the energy storage system is needed to be adopted to use regeneration energy when the vehicle is braking.

  • PDF

Study on Establishment of Wind Map of the Korean Peninsula(II. Low-Resolution Wind Mapping and Wind Resource Information System) (한반도 바람지도 구축에 관한 연구(II. 저해상도 바람지도화 및 풍력자원 정보체계))

  • Kim, Hyun-Goo;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.20-26
    • /
    • 2007
  • A low-resolution national wind map, which is a prerequisite for setting up the national dissemination target and strategy of wind energy development, has been established by numerical wind simulation using the synoptic wind map, developed at the first stage, as an upper boundary condition. Based on the wind map, Wind Resource Information System has been composed in order to support scientific and systematic wind resource assessment and analysis.

  • PDF

A Study on the Greenhouse Heating of Solar Energy - Latent Heat Storage System - (태양열-잠열축열시스템의 온실보온특성)

  • 송현갑;류영선
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1992
  • For the high quality and low cost agricultural crops in greenhouse cultivation, it is necessary to use natural energy as much as possible. In order to reduce the fossil fuel consumption and maximize the solar energy utilization in greenhouse heating, a latent heat storage material was developed as a relatively highly concentrative solar energy storage medium. And a solar energy-latent heat storage system was designed and constructed. The experimental research on greenhouse heating effect of the system was performed.

  • PDF

A Study on the Highway Snow Melting and Deicing System Using Geothermal Energy (도로의 결빙방지를 위한 지열이용 시스템 연구)

  • 신현준;서정윤
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.139-148
    • /
    • 1993
  • Thermosyphons are simple devices that can passively transport thermal energy over relatively long distance with little temperature degradation. These attributes permit the use of low grade thermal energy for thermal control of structures including the snow melting and deicing to the pavement surface. The thermosyphon system requires no costly energy input and Is completely maintenance free. This paper presents the experimental results of the snow melting system in which thermosyphon was utilized to transfer the geothermal energy to the pavement to obviate slipping traffic accidents due to freezing of pavement in winter.

  • PDF

Energy Conversion Efficiency Improvement of Piezoelectric Micropower Generator Adopting Low Leakage Diodes (저누설 다이오드를 사용한 저전력 압전발전기의 효율 개선에 관한 연구)

  • Kim, Hye-Joong;Kang, Sung-Muk;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.938-943
    • /
    • 2007
  • In this paper, we show that, in case of piezoelectric micropower generator, just replacing Schottky diodes in the bridge rectifier with ultra-low reverse leakage current diodes improves the mechanical-to-electrical energy conversion efficiency by more than 100%. Experimental and PSPICE simulation results show that, due to the ultra-low leakage current, the charging speed of the circuit employing PAD1 is higher than that of the circuit employing Schottky diodes and the saturation voltage of the circuit employing PAD1 is also higher. This study suggests that , when the internal impedance of source is very large (a few tens of $M{\Omega}$) such that maximum charging current is a few microamperes or less, in order to realize literally the energy scavenging system, ultra-low reverse leakage current diodes should be used for efficient energy conversion. Since low-level vibration is ubiquitous in the environment ranging from human movement to large infrastructures and the mechanical-to-electrical energy conversion efficiency is much more critical for use of these vibrations, we believe that the improvement in the efficiency using ultra-low leakage diodes, as found in this work, will widen greatly the application of piezoelectric micropower generator.

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.