• Title/Summary/Keyword: Low-energy System

Search Result 3,389, Processing Time 0.035 seconds

MRAM 기반 SSD 파일 시스템의 에너지 효율적 서브페이징 (Energy-Efficient Subpaging for the MRAM-based SSD File System)

  • 이재열;한재일;김영만
    • 한국IT서비스학회지
    • /
    • 제12권4호
    • /
    • pp.369-380
    • /
    • 2013
  • The advent of the state-of-the-art technologies such as cloud computing and big data processing stimulates the provision of various new IT services, which implies that more servers are required to support them. However, the need for more servers will lead to more energy consumption and the efficient use of energy in the computing environment will become more important. The next generation nonvolatile RAM has many desirable features such as byte addressability, low access latency, high density and low energy consumption. There are many approaches to adopt them especially in the area of the file system involving storage devices, but their focus lies on the improvement of system performance, not on energy reduction. This paper suggests a novel approach for energy reduction in which the MRAM-based SSD is utilized as a storage device instead of the hard disk and a downsized page is adopted instead of the 4KB page that is the size of a page in the ordinary file system. The simulation results show that energy efficiency of a new approach is very effective in case of accessing the small number of bytes and is improved up to 128 times better than that of NAND Flash memory.

공동주택 발코니창에 설치된 가동단열 시스템의 열성능 평가 (Thermal Performance Evaluation of Movable Insulation System in Apartments)

  • 윤종호;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.28-35
    • /
    • 2008
  • The aim of this study was to analysis the Heating/cooling performance of movable insulation system built in apartments. The process of this study is as follows: 1) Test-cells of movable insulation are designed through the investigation of previous paper and work. The type of the movable insulation used in test-cell is low emissivity(5%) insulation, measured for heating season and the thermal effects are analyzed. 2) The simulation program(Design Builder) was used in energy performance analysis. the reference model of simulation was made up to analysis energy performance on movable insulation system. 3) Selected reference model(Floors:15, Area of Unit:115.5$m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as slate angle of movable insulation(5$^{\circ}$, 30$^{\circ}$, 50$^{\circ}$) and position of movable insulation. Consequently, When movable insulation system is equipped with balcony window of Apartment, Annual heating energy of reference model was cut down at the average of 5.4kWh/$m^2$ or 4.6% of heating/cooling energy.

저소득층 에너지효율개선사업에 따른 난방에너지 절감 효과 및 경제성 분석 - 저소득층 단독주택 단열개선을 중심으로 - (Heating Energy Saving and Cost Benefit Analysis According to Low-Income Energy Efficiency Treatment Program - Case Study for Low-Income Detached Houses Energy Efficiency Treatment Program)

  • 김정국;이정훈;장철용;송두삼;류승환;김종훈
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.39-45
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the energy saving and cost benefit analysis of the Low-income Energy Efficiency Treatment Program supported by KOREF(Korea Energy Foundation). This program was launched in 2007 and performs building energy retrofit for the low-income and energy poverty houses. Method: Energy simulation and cost benefit analysis were accomplished for the low-income detached houses. The structure of detached house was a lot og block structure, wood frame (single glass) and concrete roof. Baseline model of the low-income detached houses was proposed. Result: Annual heating energy consumptions were decreased by about 3.2% with the window system replacement(Case 1), 9.3% with reinforcement of insulation(Case2), and 12.5% with both(Case 3) compared to those of baseline model. The construction cost will be recouped within 5 years for the Case 1, 3 years for the Case 2, and 3 years for the Case 3. Case 3 was the most cost beneficient construction method in the analyzed cases in this study.

轉流 및 Snubber 에너지 손실을 저감시킨 전류형 GTO 인버터에 의한 유도전동기의 고효율 운전 (The High Efficiency Operation of Induction Motor by Current Source GTO Inverter with Low Loss Commutation and Snubber Energy)

  • 최상원;김진표;이종하
    • 조명전기설비학회논문지
    • /
    • 제12권1호
    • /
    • pp.117-125
    • /
    • 1998
  • 본 논문에서는 전류시 유도전동기의 누설 인덕턴스 및 직류 링크 인덕터에서 발생하는 손실과 스너버 회로에서 발생하는 손실을 효과적으로 전원 및 부하로 회생하는 새로운 VCC-3를 제안하였으며, VCC-1, VCC-2 및 VCC-3를 3상 유도전동기에 적용하여 부하의 입·출력 특성과 궤환량 등을 측정, 비교·검토한 결과, VCC-3 방식의 GTO CSI가 효율개선 및 안전성 면에서 우수하다는 것을 입증하였다.

  • PDF

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

MEMS 임베디드 시스템 설계 (MEMS Embedded System Design)

  • 홍선학
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

영상 감시용 임베디드 시스템에서의 저에너지 동작을 위한 계층적 사건 탐지 (Hierarchical Event Detection for Low-Energy Operation In Video Surveillance Embedded System)

  • 김태림;김범수;김대준;김건수
    • 융합신호처리학회논문지
    • /
    • 제12권3호
    • /
    • pp.204-211
    • /
    • 2011
  • 주변의 환경을 감시하기 위한 요즘의 임베디드 시스템은 고성능의 실시간 데이터 처리능력 및 넓은 통신 대역폭을 요구할 뿐만 아니라 신호처리를 위한 임베디드 시스템의 적은 소비전력소모를 요구하고 있다. 하지만 휴대용의 성격이 있는 임베디드 시스템에 사용되는 배터리의 용량은 이러한 요구조건을 장기간 만족시킬 수 있을 만큼의 기술로는 아직 발전하지 못하였다. 본 논문에서는 이러한 상황을 극복하기 위해 저에너지로 동작하면서도 사건을 정확하게 탐지하기 위한 새로운 접근법을 제안한다. 설계된 방식은 시스템 주변에서 발생하는 사건을 탐지하기 위해 여러 알고리즘이 계층적으로 연결되어 있는 구조를 가지고 있다. 이러한 계층적 사건 탐지기를 구성하는 다양한 사건 탐지 알고리즘들의 정확도에 대한 확률적 특성 변화 따른 에너지 소모의 특성 변화를 보여주고 이들의 관계를 실험을 통하여 분석적으로 설명한다 뿐만 아니라 사건의 정적, 동적 특성에 따라 높은 사건 탐지 정확도를 유지하면서 저에너지로 동작하기 위한 다른 방식들을 기술한다.

120℃ 스팀 생성을 위한 100 kW급 히트펌프의 실험적 연구 (Experimental Study on Heating Performance Characteristic of 100 kW Heat Pump to Generate ℃ Steam)

  • 왕은석;나선익;이길봉;백영진;이영수;이범준
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.100-106
    • /
    • 2018
  • Recently, the development of a heat pump technology to recover process waste heat and to generate steam of $120^{\circ}C$ or higher required for industrial processes, has attracted attention. The research of conventional heat pump utilizing the available energy is used primarily for air conditioning, and the production temperature is about $60^{\circ}C$, so it is difficult to utilize it for industrial use. Therefore, in this study, we developed a steam heat pump (SGHP) which recovers the waste heat of process and generates steam at $120^{\circ}C$. The low-pressure refrigerant R245fa, considered to be an eco-friendly refrigerant, has been selected as the refrigerant for SGHP in this study since its Ozone Depletion Potential (ODP) is zero and the Global Warming Potential (GWP) is relatively low. A flash tank functioning as a phase separator was installed in the rear stage of the condenser, and the saturated water of high temperature was decompressed to generate steam. It was started at the initial temperature of $70^{\circ}C$, and it was confirmed that $120^{\circ}C$ steam was produced after the system stabilized. We have conducted experiments by modifying the system, and ultimately achieved a heating capacity of 101.4 kW and a COP of 3.05.

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

Energy Scavenging 시스템을 위한 회로의 특성 (Circuit Component Requirements for Energy Scavenging System)

  • 강성묵;박경진;김호성
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1790-1795
    • /
    • 2008
  • Energy scavenging is a technique that converts ambient energy, for example, vibration and light, to electrical energy in order to supply power to low power electronic devices such as ubiquitous sensors. In this paper, we propose an optimal operation condition of power delivery circuit and design strategy for energy scavenging system in which the generated power is order of microwatt and, consequently, efficient handling of power is critical. We also propose that high data transmission rate is more realistic optimal design objective rather than high energy efficiency. It is shown that disconnection of load from the storage capacitor right after data transmission reduces energy wasting and that optimal value of storage capacitor can be determined at this condition. The feasibility of our propose is proved by experiments and we believe that the proposed design strategy will promote the application of piezoelectric micropower generator to the ubiquitous sensor networks.