• 제목/요약/키워드: Low-energy System

검색결과 3,402건 처리시간 0.032초

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

저탄소 녹색도시를 위한 태양에너지 이용 선진사례 조사 (Best Practices Research Use of Solar Energy For Low Carbon Green City)

  • 김지수;이응직;이충식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.37-42
    • /
    • 2009
  • We are in search for many method at 21th century thinking about the environment internationally. One is among them low carbon green city. Consequently this dissertation put a system solar energy key point of low carbon green city and purpose of low carbon green city Besides system and technique about the solar energy best practices try to do the investigation analysis. It's important of low carbon green city's environmental friendly system such as solar heat system, solar power generation, ecological greening, All these systems are connected each other and organize low carbon green city. A solar energy system uses pure energy of the situation directly most among the environmental friendly system. Energy saving and environment-friendly city in the world must do not a choice. However, recognition conversion and infrastructure of the Korea still has not come true. But South Korea and the international best practices is not the same system. But plan to solar city, the concept of green city in Cheongju, Deagu local government. And many meetings are in progress.

  • PDF

저온온수 모세유관 바닥복사 난방시스템의 성능에 관한 실험적 연구 (Experimental Study on a Low-Temperature Hot Water Capillary Radiant Floor Heating System)

  • 조진균;박병용;이용준;정원호
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.68-82
    • /
    • 2018
  • Radiant floor heating systems with capillary tubes are energy saving systems in which hot water is circulated into capillary tube with a small diameter. In this study, the heating performance of capillary tube system is investigated in an experimental study and a simulation model. The results of the study showed that, the capillary tube radiant floor heating system maintains a more stable floor surface temperature in comparison a PB pipe system. In terms of energy consumption, the capillary tube radiant floor heating system proved to be more efficient than the PB pipe heating system at $40^{\circ}C$ of low temperature hot water supply. The difference between water temperature and room temperature can be held low for heating which saves energy. Low temperature radiant floor heating system with capillary tubes have significant advantages such as health improvement, low energy cost, optimum use of heat source(boiler) and higher operational efficiency.

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF

저전력 블루투스를 사용한 사용자 성향 분석 시스템 (Customer Preference Analysis System using Bluetooth Low Energy)

  • 뉴엔휴;박지선;치옥용;박산;장현준;홍성빈;김준오;조경은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.1073-1074
    • /
    • 2017
  • In this paper, we present a customer preference analysis system using the Bluetooth Low Energy technology. Compared to Classic Bluetooth, Bluetooth Low Energy provides considerably reduced power consumption, and cost, as well as some unique characteristics while maintaining a similar communication range. The customer preference analysis system collects nearby Bluetooth Low Energy devices using an Android mobile device via Bluetooth Low Energy. In addition, the system is capable of suggesting, and advertising products that are related to these Bluetooth Low Energy devices based on the name of their manufacturer. This feature aims to attract potential customers to purchase these products.

휘발성 유기물질의 고효율 열산화 시스템 개발 연구 (Study on the Development of Recuperative Thermal Oxidation System for the Volatile Organic Compounds)

  • 현주수;이시훈;이종섭;민병무
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.225-230
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150 kcal/$m^3$, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption, The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density to make a combustion temperature higher than usual swirl combustor and also increases mixing intensity, This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

  • PDF

저온 활용을 위한 실리카겔 흡착식 담수화시스템의 성능연구 (A Performance Study on Silica Gel Adsorption Desalination System Utilizing Low Temperature Heat Sources)

  • 현준호;;이윤준;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.39-46
    • /
    • 2013
  • This work introduces a simple one-reactor adsorption desalination system that harnesses low temperature heat sources (solar energy, waste heat), which has been experimentally studied to elicit the most suitable design parameters and operating conditions. The design process of the system was divided into three parts to reflect the operating principle of desalination technology with application of adsorption processes. First, the evaporator for the vaporization of saline water was designed, then the reactor for the adsorption and release of the steam, followed by the condenser for condensation of the fresh water. The specific water yield is measured experimentally with respect to the time while controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. The present system well demonstrates the applicability of silica gel in relation to adsorption technologies that utilize low temperature heat sources ranging from 60 to $80^{\circ}C$, such as solar energy and waste heat.

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

Nuclear Structure Studies with Low Temperature Technique (I)

  • Young Koh;Park, Won-Seok;Park, Chang-Kyu;Shin, Hee-Sung;Song, Tae-Yung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(2)
    • /
    • pp.669-674
    • /
    • 1996
  • The theory of quantum mechanics states that for any system there are a set of discrete physical states, quantum states, which corresponds a particular energy level of the system. The lowest energy the system can have, corresponding to its ground state, is not necessarily zero, but depends only on the precise microscopic nature of the system under consideration. At the absolute zero of temperature all systems will be in their lowest energy state (zero point energy) and as the system is warmed from OK, the higher energy states become occupied. The probability of occupancy of the excited states relative to that of the ground state is proportional to the absolute temperature. Therefore we can obtain nuclear dipole and quadrupole moment very accurately at ultra low temperature (<15mk) by NMR and from the destruction of anisotropy. The former is called LTNO/NMR and the latter is called LTNO (Low Temperature Nuclear Orientation). In this paper we discuss and introduce only an experimental apparatus with results of cooling power test, a helium dilution refrigerator, which can reache 8mK, and an actual technique for the experiment, a theory and results will be presented in another papers.

  • PDF

캐스케이드 열펌프시스템의 운전 특성에 관한 연구 (A Study on the Operating Performance of a Cascade Heat Pump)

  • 장기창;백영진;나호상;김지영;이재훈
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF