• Title/Summary/Keyword: Low-dose spillage

Search Result 5, Processing Time 0.018 seconds

Dosimetric Evaluation of Low-Dose Spillage Volumes for Head and Neck Cancer Using Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Treatment Techniques

  • Kumar, Gourav;Bhushan, Manindra;Kumar, Lalit;Kishore, Vimal;Raman, Kothanda;Kumar, Pawan;Barik, Soumitra;Purohit, Sandeep
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • Purpose: This study was designed to investigate the dosimetric difference between intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) in head and neck cancer (HNC). The study primarily focuses on low-dose spillage evaluation between these two techniques. Methods: This retrospective study involved 45 patients with HNC. The treatment plans were generated using the IMRT and VMAT techniques for all patients. Dosimetric comparisons were performed in terms of target coverage, organ-at-risk (OAR) sparing, and various parameters, including conformity index, uniformity index, homogeneity index, conformation number, low-dose volumes, and normal tissue integral dose (NTID). Results: No significant (P>0.05) difference in planning target volume coverage (D95%) was observed between IMRT and VMAT plans for supraglottic larynx, hard palate, and tongue cancers. A decrease in dose volumes ranging from 1 Gy to 30 Gy was observed for VMAT plans compared with those for IMRT plans, except for V1Gy and V30Gy for supraglottic larynx cancer and V1Gy for tongue cancer. Moreover, decreases (P<0.05) in NTID were observed for VMAT plans compared with that for IMRT plans in supraglottic larynx (4.50%), hard palate (12.80%), and tongue (7.76%) cancers. In contrast, a slight increase in monitor units for VMAT compared with those for IMRT in supraglottic larynx (0.46%), hard palate (2.54%), and tongue (7.56%) cancers. Conclusions: For advanced-stage HNC, both IMRT and VMAT offer satisfactory clinical plans. VMAT offers a conformal and homogeneous dose distribution with comparable OAR sparing and higher dose falloff outside the target volume than IMRT, which provides an edge to reduce the risk of secondary malignancies for HNC over IMRT.

Dosimetric comparison of coplanar and non-coplanar volumetric-modulated arc therapy in head and neck cancer treated with radiotherapy

  • Gayen, Sanjib;Kombathula, Sri Harsha;Manna, Sumanta;Varshney, Sonal;Pareek, Puneet
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • Purpose: To evaluate the dosimetric variations in patients of head and neck cancer treated with definitive or adjuvant radiotherapy using optimized non-coplanar (ncVMAT) beams with coplanar (cVMAT) beams using volumetric arc therapy. Materials and Methods: Twenty-two patients of head and neck cancer that had received radiotherapy using VMAT in our department were retrospectively analyzed. Each of the patients was planned using coplanar and non-coplanar orientations using an optimized couch angle and fluences. We analyzed the Conformity Index (CIRTOG), Dose Homogeneity Index (DHI), Heterogeneity Index (HIRTOG), low dose volume, target and organs-at-risk coverage in both the plans without changing planning optimization parameters. Results: The prescription dose ranged from 60 Gy to 70 Gy. Using ncVMAT, CIRTOG, DHI and HIRTOG, and tumor coverage (ID95%) had improved, low dose spillage volume in the body V5Gy was increased and V10Gy was reduced. Integral dose and intensity-modulated radiation therapy factor had increased in ncVMAT. In the case of non-coplanar beam arrangements, maximum dose (Dmax) of right and left humeral head were reduced significantly whereas apex of the right and left lung mean dose were increased. Conclusion: The use of ncVMAT produced better target coverage and sparing of the shoulder and soft tissue of the neck as well as the critical organ compared with the cVMAT in patients of head and neck malignancy.

Cyberknife Dosimetric Planning Using a Dose-Limiting Shell Method for Brain Metastases

  • Yoon, Kyoung Jun;Cho, Byungchul;Kwak, Jung Won;Lee, Doheui;Kwon, Do Hoon;Ahn, Seung Do;Lee, Sang-Wook;Kim, Chang Jin;Roh, Sung Woo;Cho, Young Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.753-760
    • /
    • 2018
  • Objective : We investigated the effect of optimization in dose-limiting shell method on the dosimetric quality of CyberKnife (CK) plans in treating brain metastases (BMs). Methods : We selected 19 BMs previously treated using CK between 2014 and 2015. The original CK plans ($CK_{original}$) had been produced using 1 to 3 dose-limiting shells : one at the prescription isodose level (PIDL) for dose conformity and the others at low-isodose levels (10-30% of prescription dose) for dose spillage. In each case, a modified CK plan ($CK_{modified}$) was generated using 5 dose-limiting shells : one at the PIDL, another at intermediate isodose level (50% of prescription dose) for steeper dose fall-off, and the others at low-isodose levels, with an optimized shell-dilation size based on our experience. A Gamma Knife (GK) plan was also produced using the original contour set. Thus, three data sets of dosimetric parameters were generated and compared. Results : There were no differences in the conformity indices among the $CK_{original}$, $CK_{modified}$, and GK plans (mean 1.22, 1.18, and 1.24, respectively; p=0.079) and tumor coverage (mean 99.5%, 99.5%, and 99.4%, respectively; p=0.177), whereas the $CK_{modified}$ plans produced significantly smaller normal tissue volumes receiving 50% of prescription dose than those produced by the $CK_{original}$ plans (p<0.001), with no statistical differences in those volumes compared with GK plans (p=0.345). Conclusion : These results indicate that significantly steeper dose fall-off is able to be achieved in the CK system by optimizing the shell function while maintaining high conformity of dose to tumor.

Evaluation of radiological safety according to accident scenarios for commercialization of spent resin mixture treatment device

  • Choi, Woo Nyun;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2606-2613
    • /
    • 2022
  • Spent resin often exceeds radiation limits for safe disposal, creating a need for commercial-scale treatment techniques to reduce resin radioactivity. In this study, the radiological safety of a commercialized spent resin treatment device with a treatment capacity of 1 ton/day was evaluated. The results confirm that the device is radiologically safe in the event of an accident. This device desorbs 14C from the spent resin, allowing disposal as low-level waste instead of intermediate-level waste. The device also reduces overall waste by recycling the extracted 14C. Potential accident scenarios were explored to enable dose assessments for both internal and external exposure while preventing further spillage of the device and processing the spilled resin. The scenarios involved the development of a surface fracture on the resin mixture separator and microwave systems, which were operated under pressure and temperature of 0-6 bar and 0-150 ℃, respectively. In the case of accidents with separator and microwave device, the maximum allowable working time of worker were derived, respectively, considering external and internal exposures. When wearing the respirator corresponding to APF 50, in the case of the microwave device accident scenario, the radiological safety was confirmed when the maximum worker worked within 132.1 h.

Comparison and evaluation of volumetric modulated arc therapy and intensity modulated radiation therapy plans for postoperative radiation therapy of prostate cancer patient using a rectal balloon (직장풍선을 삽입한 전립선암 환자의 수술 후 방사선 치료 시 용적변조와 세기변조방사선치료계획 비교 평가)

  • Jung, hae youn;Seok, jin yong;Hong, joo wan;Chang, nam jun;Choi, byeong don;Park, jin hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose : The dose distribution of organ at risk (OAR) and normal tissue is affected by treatment technique in postoperative radiation therapy for prostate cancer. The aim of this study was to compare dose distribution characteristic and to evaluate treatment efficiency by devising VMAT plans according to applying differed number of arc and IMRT plan for postoperative patient of prostate cancer radiation therapy using a rectal balloon. Materials and Methods : Ten patients who received postoperative prostate radiation therapy in our hospital were compared. CT images of patients who inserted rectal balloon were acquired with 3 mm thickness and 10 MV energy of HD120MLC equipped Truebeam STx (Varian, Palo Alto, USA) was applied by using Eclipse (Version 11.0, Varian, Palo Alto, USA). 1 Arc, 2 Arc VMAT plans and 7-field IMRT plan were devised for each patient and same values were applied for dose volume constraint and plan normalization. To evaluate these plans, PTV coverage, conformity index (CI) and homogeneity index (HI) were compared and $R_{50%}$ was calculated to assess low dose spillage as per treatment plan. $D_{25%}$ of rectum and bladder Dmean were compared on OAR. And to evaluate the treatment efficiency, total monitor units(MU) and delivery time were considered. Each assessed result was analyzed by average value of 10 patients. Additionally, portal dosimetry was carried out for accuracy verification of beam delivery. Results : There was no significant difference on PTV coverage and HI among 3 plans. Especially CI and $R_{50%}$ on 7F-IMRT were the highest as 1.230, 3.991 respectively(p=0.00). Rectum $D_{25%}$ was similar between 1A-VMAT and 2A-VMAT. But approximately 7% higher value was observed on 7F-IMRT compare to the others(p=0.02) and bladder Dmean were similar among the all plan(P>0.05). Total MU were 494.7, 479.7, 757.9 respectively(P=0.00) for 1A-VMAT, 2A-VMAT, 7F-IMRT and at the most on 7F-IMRT. The delivery time were 65.2sec, 133.1sec, 145.5sec respectively(p=0.00). The obvious shortest time was observed on 1A-VMAT. All plans indicated over 99.5%(p=0.00) of gamma pass rate (2 mm, 2%) in portal dosimetry quality assurance. Conclusion : As a result of study, postoperative prostate cancer radiation therapy for patient using a rectal balloon, there was no significant difference of PTV coverage but 1A-VMAT and 2A-VMAT were more efficient for dose reduction of normal tissue and OARs. Between VMAT plans. $R_{50%}$ and MU were little lower in 2A-VMAT but 1A-VMAT has the shortest delivery time. So it is regarded to be an effective plan and it can reduce intra-fractional motion of patient also.

  • PDF