• Title/Summary/Keyword: Low-density-parity-check (LDPC)

Search Result 205, Processing Time 0.019 seconds

Fast Multi-Rate LDPC Encoder Architecture for WiBro System (WiBro 시스템을 위한 고속 LDPC 인코더 설계)

  • Kim, Jeong-Ki;S.P., Balakannan;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.1-8
    • /
    • 2008
  • Low Density Parity Check codes(LDPC) are recently focused on communication systems due to its good performance. The standard of WiBro has also included LDPC codes as a channel coding. The weak point of implementation for LDPC encoder is that conventional binary Matrix Vector Multiplier has many clock cycles which limit throughput. In this paper, we propose semi-parallel architecture by using cyclic shift registers and exclusive-OR without conventional Matrix Vector Multipliers over the standard parity check matrices with Circulant Permutation Matrices(CPM). Furthermore, multi-rate encoder is designed by using proposed architecture. Our encoder with multi-rate for IEEE 802.16e LDPC has lower clock cycles and higher throughput.

Analysis of Performance according to LDPC Decoding Algorithms (저밀도 패리티 검사부호의 복호 알고리즘에 따른 성능 비교 분석)

  • Yoon, Tae Hyun;Park, Jin Tae;Joo, Eon Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.972-978
    • /
    • 2012
  • LDPC (low density parity check) code shows near Shannon limit performance by iterative decoding based on sum-product algorithm (SPA). Message updating procedure between variable and check nodes in SPA is done by a scheduling method. LDPC code shows different performance according to scheduling schemes. The conventional researches have been shown that the shuffled BP (belief propagation) algorithm shows better performance than the standard BP algorithm although it needs less number of iterations. However the reason is not analyzed clearly. Therefore the reason of difference in performance according to LDPC decoding algorithms is analyzed in this paper. 4 cases according to satisfaction of parity check condition are considered and compared. As results, the difference in the updating procedure in a cycle in the parity check matrix is considered to be the main reason of performance difference.

Construction of Semi-Algebra Low Density Parity Check Codes for Parallel Array Processing (병렬 어레이 프로세싱을 위한 반집합 대수 LDPC 부호의 구성)

  • Lee Kwang-jae;Lee Moon-ho;Lee Dong-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present a novel LDPC code construction called as semi-algebra low density parity check(LDPC) codes which is one kind of deterministic LDPC code based on dual-diagonal sub-matrix. The constructing method results in a class of high rate LDPC codes. Codes in this class have a large girth and good minimum distances. Furthermore, they can be implemented by simple parallel array architecture using cyclic shift register and perform well with the iterative decoding.

Energy Efficiency in Wireless Sensor Networks using Linear-Congruence on LDPC codes (LDPC 코드의 Linear-Congruence를 이용한 WSN 에너지 효율)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.68-73
    • /
    • 2007
  • Recently, WSN(wireless sensor networks) consists of several sensor nodes in sensor field. And each sensors have the enforced energy constraint. Therefore, it is important to manage energy efficiently. In WSN application system, FEC(Forward error correction) increases the energy efficiency and data reliability of the data transmission. LDPC(Low density parity check) code is one of the FEC code. It needs more encoding operation than other FEC code by growing codeword length. But this code can approach the Shannon capacity limit and it is also can be used to increase the data reliability and decrease the transmission energy. In this paper, the author adopt Linear-Congruence method at generating parity check matrix of LDPC(Low density parity check) codes to reduce the complexity of encoding process and to enhance the energy efficiency in the WSN. As a result, the proposed algorithm can increase the encoding energy efficiency and the data reliability.

Low-Complexity Multi-Size Circular Shifter for QC-LDPC Decoder Based on Two Serial Barrel-Rotators (두 개의 직렬 Barrel-Rotator를 이용한 QC-LDPC 복호기용 저면적 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1839-1844
    • /
    • 2015
  • The low-density parity-check(LDPC) code has been adopted in many communication standards due to its error correcting performance, and the quasi-cyclic LDPC(QC-LDPC) is widely used because of implementation easiness. In the QC-LDPC decoder, a cyclic-shifter is required to rotate data in various sizes. This kind of cyclic-shifters are called multi-size circular shifter(MSCS), and this paper proposes a low-complexity structure for MSCS. In the conventional serially-placed two barrel-rotators, the unnecessary multiplexers are revealed and removed, leading to low-complexity. The experimental results show that the area is reduced by about 12%.

Combined Normalized and Offset Min-Sum Algorithm for Low-Density Parity-Check Codes (LDPC 부호의 복호를 위한 정규화와 오프셋이 조합된 최소-합 알고리즘)

  • Lee, Hee-ran;Yun, In-Woo;Kim, Joon Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-47
    • /
    • 2020
  • The improved belief-propagation-based algorithms, such as normalized min-sum algorithm (NMSA) or offset min-sum algorithm (OMSA), are widely used to decode LDPC(Low-Density Parity-Check) codes because they are less computationally complex and work well even at low SNR(Signal-to-Noise Ratio). However, these algorithms work well only when an appropriate normalization factor or offset value is used. A new method that uses a CMD(Check Node Message Distribution) chart and least-square method, which has been recently proposed, has advantages on computational complexity over other approaches to get optimal coefficients. Furthermore, this method can be used to derive coefficients for each iteration. In this paper, we apply this method and propose an algorithm to derive a combination of normalization factor and offset value for a combined normalized and offset min-sum algorithm to further improve the decoding of LDPC codes. Simulations on the next-generation broadcasting standards, ATSC 3.0 LDPC codes, prove that a combined normalized and offset min-sum algorithm which takes the proposed coefficients as correction coefficients shows the best BER performance among other decoding algorithms.

Channel Estimation and LDPC Code Puncturing Schemes Based on Incremental Pilots for OFDM

  • Jung, Sung-Yoon;Kim, Sung-Hwan
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.603-606
    • /
    • 2010
  • In this letter, we propose a channel estimation algorithm based on incremental pilots. These are pilots additionally inserted after puncturing the modulated orthogonal frequency division multiplexing (OFDM) symbols to enhance channel estimation performance without lowering bandwidth efficiency. A low-density parity-check code puncturing scheme is also proposed to prevent the performance degradation due to the codeword bit loss caused by punctured OFDM symbols.

Implementation of Dual-Diagonal Quasi-cyclic LDPC(Low Density Parity Check) decoder for Efficient Encoder (효율적 부호를 고려한 Dual-Diagonal Quasi-cyclic LDPC(Low Density Parity Check) 복호기의 구현)

  • Byun, Yong-Ki;Kim, Jong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2023-2024
    • /
    • 2006
  • 1962년 Gallager에 의해 처음 제안된 LDPC 부호는 복호를 수행하는 부호방식으로 패리티 행렬(H)의 대부분이 0으로 구성되어 복호시에 적은 연산량을 요구하며, shannon의 한계에 도달하는 복호 능력으로, 차세대 통신의 주된 부호 방식으로 고려되고 있다. 하지만, LDPC는 부호화에 있어서 여타 다른 부호방식에 비해 복잡한 특성을 가지고 있으므로, 이를 개선하기 위한 부호방식의 적용이 필요하다. 본 논문에서는 효율 적인 부호화를 위하여 Dual-diagonal H parity행렬을 구성 하고, 쉽게 부호 길이를 확장 할 수 있는 Quasi-Cyclic 방식을 적용한 복호기를 구현하였다.

  • PDF

Code Rate 1/2, 2304-b LDPC Decoder for IEEE 802.16e WiMAX (IEEE 802.16e WiMAX용 부호율 1/2, 2304-비트 LDPC 복호기)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.414-422
    • /
    • 2011
  • This paper describes a design of low-density parity-check(LDPC) decoder supporting block length 2,304-bit and code rate 1/2 of IEEE 802.16e mobile WiMAX standard. The designed LDPC decoder employs the min-sum algorithm and partially parallel layered-decoding architecture which processes a sub-matrix of $96{\times}96$ in parallel. By exploiting the properties of the min-sum algorithm, a new memory reduction technique is proposed, which reduces check node memory by 46% compared to conventional method. Functional verification results show that it has average bit-error-rate(BER) of $4.34{\times}10^{-5}$ for AWGN channel with Fb/No=2.1dB. Our LDPC decoder synthesized with a $0.18{\mu}m$ CMOS cell library has 174,181 gates and 52,992 bits memory, and the estimated throughput is about 417 Mbps at 100-MHz@l.8-V.

An Efficient Overlapped LDPC Decoder with a Upper Dual-diagonal Structure

  • Byun, Yong Ki;Park, Jong Kang;Kwon, Soongyu;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • A low density parity check (LDPC) decoder provides a most powerful error control capability for mobile communication devices and storage systems, due to its performance being close to Shannon's limit. In this paper, we introduce an efficient overlapped LDPC decoding algorithm using a upper dual-diagonal parity check matrix structure. By means of this algorithm, the LDPC decoder can concurrently execute parts of the check node update and variable node update in the sum-product algorithm. In this way, we can reduce the number of clock cycles per iteration as well as reduce the total latency. The proposed decoding structure offers a very simple control and is very flexible in terms of the variable bit length and variable code rate. The experiment results show that the proposed decoder can complete the decoding of codewords within 70% of the number of clock cycles required for a conventional non-overlapped decoder. The proposed design also reduces the power consumption by 33% when compared to the non-overlapped design.