• Title/Summary/Keyword: Low-density concentration

Search Result 714, Processing Time 0.027 seconds

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Characteristics and pedigree selection of a shortened cultivation period strain in Lepista nuda (재배기간이 짧은 민자주방망이버섯 우량계통 선발 및 특성)

  • Jeon, Jong-Ock;Lee, Kwan-Woo;Lee, Kyoung-Jun;Kim, Min-Ja;Kim, In-Jae;Kim, Young-Ho
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • This study was conducted to cultivate new Lepista nuda varieties with shorter cultivation period and better fruiting body compared to that of wild strains, for mass production and commercial application. Eighteen genetic resources of L. nuda were collected and grown in boxes using rice straw-fermented growth medium. Four lines with fruiting bodies were formed and selected as cross-breeding lines. Although 657 combinations were crossed through monospore crossing, only 17 combinations were bred between the 'CBMLN-19' line and the 'CBMLN-30' line. Among them, 8 lines with fast mycelial growth and high density were selected. After inoculating the rice straw-fermented growth medium with 14 genetic resources and 8 cross-breeding lines, their incubation period was investigated. Six of the cross-breeding lines completed their incubation in 20 days, while 7 of the 14 genetic resources took more than 40 days to complete their incubation, reducing the incubation period by more than 20 days in most cross-breeding lines. After the incubations were completed, the clay loam soil was covered with for post-cultivation, and when the mycelial cultivation was complete, the formation of fruiting bodies was induced after scraping the mycelial bodies under these environmental conditions: 14℃, 95% relative humidity or higher, and 1,500 to 2,000 ppm CO2 concentration. The temperature was reduced to 6℃ at night, resulting in a low temperature shock. Thus, 4 lines of fruiting bodies occurred from two genetic resources 'CBMLN-31' and 'CBMLN-44' and two cross-bred lines 'CBMLN-96' and 'CBMLN-103'. After inoculation, the longest period for fruiting bodies to occur was 100 days for the control:, the genetic resource 'CBMLN-31', and the shortest period (45 days) was observed for the cross-breeding line 'CBMLN-103'. The result of the investigation of the fruiting body characteristics shows that the cross-bred line 'CBMLN-103' showed a small form with 1.9 g of individual weight and 123validstipes per box, which was the highest incidence among the four lines. Another cross-bred line, 'CBMLN-96', had an individual weight of 5.5 g, which is larger than that of 'CBMLN-103'; however, the number of valid stipes per box was 30 less than that of 'CBMLN-103'. Quantity analysis showed that the control, 'CBMLN-31', had the highest quantity of 783 g per box, followed by the cross-bred line, 'CBMLN-96' with 165 g per box, and then the 'CBMLN-103' with 232 g. The quantity of the two crossbred lines was lower than that of the control 'CBMLN-31'; however, the amount of fruiting bodies was higher, and the cultivation period was shortened by 32 to 33 days. Therefore, these two lines would be selected as superior lines.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.