• Title/Summary/Keyword: Low-cycle Fatigue

Search Result 347, Processing Time 0.027 seconds

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

High Temperature Fatigue Life and Fractography under Asymmetric Waveform in Strain Control (변형률제어 비대칭파형 하의 고온피로수명 및 파면)

  • 허정원;박원조;유재환
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • In this paper, the low cycle fatigue(LCF) life tests were carried out under waveforms of asymmetric triangle($4{\times}10^{-3}$ and $4{\times}10^{-10}$ strain rate) and hold-time(1min and 10min) in strain control. In triangular waveform, the fatigue lives of fast-slow waveforms were decreased to about 63-73% and them of slow-fast waveforms were down to about 23-24% compared to them of fast-fast waveforms. The shapes of fracture surfaces were transgranular in fast-fast and fast-slow waveforms and intergranular in slow-fast ones. The fatigue lives of slow-fast waveforms were remarkedly shorter than them of hold-time waveforms even though cycle times of hold time waveforms were longer than them of slow-fast ones. The damage mechanisms of frature surfaces were mixed frature with both transgranular and intergranular, but intergranular fratures were r-type cavity in hold-time waveforms and w-type cavity in slow-fast ones.

The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy (질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동)

  • Lee, C.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

Service Life Analysis of Control Valve for Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Kang, Yong-Ho;Shin, Cheul-Gyu;Park, Hee-Sung;Yu, Bong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable ${\Delta}T$ limit curve during the startup. Because allowable ${\Delta}T$ limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage and combined rupture and low cycle fatigue damage criterion proposed for yielding the allowable ${\Delta}T$ limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has peformed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ${\Delta}T$ limit curve.

  • PDF

Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Gang, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Low Cycle Fatigue Model for Longitudinal Reinforcement (축방향철근의 저주파 피로 모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.273-282
    • /
    • 2010
  • The purposes of this study are to verify the existing model and to propose a rational model for the fracture characteristic of reinforcing steel which is manufactured in Korea being subjected to cyclic loading. This investigation deals with modeling of the low-cycle fatigue behavior for longitudinal reinforcement steel of reinforced concrete bridge substructure (piles and columns of piers). The proposed low-cycle model of longitudinal steel is modeled based on 81 experimental data. The non-linear analysis program was developed using the proposed low-cycle model. The non-linear analysis are applied to the 6 circular bridge column test results and the accuracy of proposed model is discussed.

A study on the thermal-mechanical fatigue life prediction of 12 Cr steel (12 Cr 강의 열피로 수명단축에 관한 연구)

  • Ha, Jeong-Soo;Kim, Kun-Young;Ahn, Hye-Thon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF

High-temperature Low-cycle Fatigue Life prediction of a Liquid Rocket Turbopump Turbine (액체로켓 터보펌프 터빈의 고열 저주기 피로수명 예측)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.18-21
    • /
    • 2009
  • The life of components under high thermal load is typically shorter than other components. The turbopump turbine of liquid rocket is operated under these environments like high temperature and high centrifugal dorce due to high rotating velocity during operating time. These conditions may often cause low-cycle fatigue problem in the turbopump turbine. First of all, to analyze heat stress, ABAQUS/CAE is used and Coffin-manson's equation is used to consider elasticity and plasticity strain. S.W.T's method is used to consider the mean stress effect, using strain history, low-cycle fatigue analysis is done for turbopump turbine which may have FCL(fracture critical location). In this paper, strain life method is applied to analyze low-cycle fatigue.

  • PDF