• 제목/요약/키워드: Low-cost sensor network

검색결과 237건 처리시간 0.024초

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

센서네트워크에서 전력 조절에 의한 에너지를 효율적으로 사용하는 라우팅 (Energy Efficient Routing with Power Control in Sensor Networks)

  • 윤형욱;이태진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 통신소사이어티 추계학술대회논문집
    • /
    • pp.140-144
    • /
    • 2003
  • A sensor network consists of many low-cost, low-power, and multi-functional sensor nodes. One of most important issues in of sensor networks is to increase network lifetime, and there have been researches on the problem. In this paper, we propose a routing mechanism to prolong network lifetime, in which each node adjusts its transmission power to send data to its neighbors. We model the energy efficient routing with power control and present an algorithm to obtain the optimal flow solution for maximum network lifetime. Then, we derive an upper bound on the network lifetime for specific network topologies.

  • PDF

Positioning Scheme using Acceleration Factor for Wireless Sensor Networks

  • Park, Na-Yeon;Son, Cheol-Su;Lee, Sung-Jae;Hwang, In-Moon;Kim, Won-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2008
  • Locations of nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times.

A LOW-COST PROTOCOL IN SENSOR NETWORK UBIQUITOUS ENVIRONMENT

  • Lee Dong-heui;Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.766-769
    • /
    • 2005
  • In a ubiquitous environment made up of multiple sensors, most sensors participate in communications with limited battery, and the sensor node isn't able to participate in communications when all the battery is used up. When an existing authentication method is used for the sensor node which has to participate in a long term communication with limited battery, it creates a problem by making the length of network maintenance or sensor node's operation time relatively shorte. Therefore, a network structure where RM (Register Manager) node and AM (Authentication Manager) node are imported to solve the energy consumption problem during a communication process is presented in this thesis. This offers a low power protocol based on safety through a mutual authentication during communications. Through registration and authentication manager nodes, each sensor nodes are ensured of safety and the algorithm of key's generation, encryption/descramble and authentication is processed with faster operation speed. So the amount of electricity used up during the communications between sensor nodes has been evaluated. In case of the amount of electrical usage, an average of $34.783\%$ for the same subnet and 36.855 for communications with two different subnets, are reduced. The proposed method is a protocol which maintains the limited battery for a long time to increase the effectiveness of energy usage in sensor nodes and can also increase the participation rate of communication by sensor nodes.

  • PDF

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • 제9권4호
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

저전력 무선 네트워크를 위한 유무선 연동 센서 네트워크의 전력 제어 방법 (Method for Power control of Wired and Wireless linkage Sensor Network for Low-power Wireless network)

  • 이경숙;김현덕
    • 융합보안논문지
    • /
    • 제12권3호
    • /
    • pp.27-34
    • /
    • 2012
  • 본 논문에서는 IEEE와 ZigBee Alliance에서 제정한 국제 표준안과 호환성을 가지고, 저전력 저비용을 강점으로 하는 지그비를 이용하여 상대적으로 열악한 전송 환경을 갖지만 적용이 용이한 무선망과, 기존 무선 기반 센서 네트워크 단점을 극복하기 위해 이미 구축되어 있는 동축케이블을 이용한 유선망을 연동함에 있어서 RSSI 모니터링을 통한 출력파워 조절 알고리즘을 이용하여 저전력 소모를 특징으로 하는 지그비 장치의 새로운 저전력 소모 방안을 제시하였다. 보다 최적화된 저전력 소모를 가능하도록 실험을 통해 RSSI 모니터링을 통한 출력 파워 조절 알고리즘의 유효성을 검증하였다.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

저속 WPAN에서 수신신호세기의 Vector Matching을 이용한 위치 인식 방식 (Location Awareness Method using Vector Matching of RSSI in Low-Rate WPAN)

  • 남윤석;최은창;허재두
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.93-104
    • /
    • 2005
  • Recently, RFID/USN is one of fundamental technologies in information and communications networks. Low-Rate WPAN, IEEE802.15.4 is a low-cost communication network that allows wireless connectivity in applications with limited Power and relaxed throughput requirements. Its applications are building automation, personal healthcare, industrial control, consumer electronics, and so on. Some applications require location information. Of course location awareness is useful to improve usability of data Low-Rate WPAN Is regarded as a key specification of the sensor network with the characteristics of wireless communication, computing, energy scavenging, self-networking, and etc. Unfortunately ZigBee alliance propose a lot of applications based on location aware technologies, but the specification and low-rate WPAN devices don't support anything about location-based services. RSSI ( Received Signal Strength indication) is for energy detection to associate, channel selection, and etc. RSSI is used to find the location of a potable device in WLAN. In this paper we studied indoor location awareness using vector matching of RSSI in low-Rate wireless PAN. We analyzed the characteristics of RSSI according to distance and experimented location awareness. We implemented sensor nodes with different shapes and configured the sensor network for the location awareness with 4 fixed nodes and a mobile node. We try to contribute developing location awareness method using RSSI in 3-dimension space.

  • PDF

모바일 센서 네트워크를 위한 에너지 효율적이고 경제적인 소형 이동 로봇의 개발 (Energy-Effective Low-Cost Small Mobile Robot Implementation for Mobile Sensor Network)

  • 김홍준;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.284-294
    • /
    • 2008
  • In this paper, we describe an implementation of small mobile robot that can be used at research and application of mobile sensor networking. This robot that will constitute the sensor network, as a platform of multi-robot system for each to be used as sensor node, has to satisfy restrictions in many aspects in order to perform sensing, communication protocol, and application algorithms. First, the platform must be designed with a robust structure and low power consumption since its maintenance after deployment is difficult. Second, it must have flexibility and modularity to be used effectively in any structure so that it can be used in various applications. Third, it must support the technique of wireless network for ubiquitous computing environment. At last, to let many nodes be scattered, it must be cost-effective and small. Considering the above restrictions of the mobile platform for sensor network, we designed and implemented robots control the current of actuator by using additional circuit for power efficiency. And we chose MSP430 as MCU, CC2420 as RF transceiver, and etc, that have the strength in the aspect of power. For flexibility and modularity, the platform has expansion ports. The results of experiments are described to show that this robot can act as sensor node by RF communication process with Zigbee standard protocol, execute the navigation process with simple obstacle avoidance and the moving action with RSSI(Received Signal Strength Indicator), operate at low-power, and be made with approx. $100.