• Title/Summary/Keyword: Low-contrast Image

Search Result 449, Processing Time 0.025 seconds

Model-based Dithering Using Dot Pattern Selection (도트 패턴 선택을 이용한 모델 기반 디더링)

  • Lee, Chae-Soo;Park, Yang-Woo;Uam, Tae-Uk;Jang, Joo-Seok;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.247-257
    • /
    • 2001
  • New methods are proposed for printing a full resolution image on a limited output device. The proposed algorithm uses a dot-pattern database that models overlapping phenomena among neighbor printing dots. To solve the problem of dot-overlap, the gray levels of dot-pattern sets were calculated using a circular dot-overlap model and then measured by a spectrometer. Thereafter, in order to improve the visual quality of the color dithering, the contrast sensitivity function of the human visual system was used. As a result, the optimal dot-pattern can be selected from the database. Consequently, the proposed algorithm can produce high quality images while using low-cost color devices.

  • PDF

Cervical Ganglioneuroma Associated with Neurofibromatosis Type 1 (제 1형 신경섬유종증에 동반된 경부 신경절신경종)

  • Choi, Eui-Chul;Kim, Jun-Hyuk;Shin, Ho-Seong;Lee, Ji-Hye;Lee, Young-Man
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.477-480
    • /
    • 2010
  • Purpose: Ganglioneuromas are well-differentiated tumors derived from neuroectodermal neural crest cells. Although these tumors can occur anywhere along the sympathetic chain from the base of the skull to the pelvic cavity, they usually develop in the posterior mediastinum and retroperitoneum these tumors are rarely found in the cervical region. Method: We report the case of a 16-year-old male patient with neurofibromatosis type 1 who was admitted because of a palpable mass centrally located on the left side of the neck. A preoperative contrast-enhanced neck computed tomography image showed a low-density homogeneous mass on the parapharyngeal space along with marked displacement of the trachea and carotid vessels. Round and soft masses were also detected on both axillae. Results: The patient subsequently underwent complete excision of the neck mass via the transcervical approach. The mass was smooth and well encapsulated between the sternocleidomastoid muscle and the trachea. Further, the mass appeared to arise from the cervical sympathetic chain, which was preserved during surgery. Both the axillary masses were also excised. The histopathological findings were ganglioneuroma for the neck mass and neurofibroma for both the axillary masses. Conclusion: Cervical ganglioneuromas are rare tumors that present as enlarging parapharyngeal cervical masses in the oropharynx or neck. To our knowledge, a case of cervical ganglioneuroma associated with neurofibromatosis type 1 has never been reported. In patients with neurofibromatosis, multiple tumors may develop, and therefore periodic clinical and radiological follow-up is recommended. Further, repeated imaging analysis should be performed if the presence of another tumor is suspected.

Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks (원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발)

  • Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray computed tomography (CT) is very useful for the quantitative evaluation of internal structures, particularly defects in rock samples, such as pores and fractures. In situ CT allows 3D imaging of a sample subjected to various external treatments such as loading and therefore enables observation of changes that occur during the loading process. We reviewed state-of-the-art of in situ CT applications for geomaterials. Two triaxial cells made using relatively low density but high strength materials were developed aimed at in situ CT scanning during hydro-mechanical laboratory testing of rocks. Preliminary results for in situ CT imaging of granite and sandstone samples with diameters ranging from 25 mm to 50 mm show a resolution range of 34~105 ㎛ per pixel pitch, indicating the feasibility of in situ CT observations for internal structural changes in rocks at the micrometer scale. Potassium iodide solution was found to improve the image contrast, and can be used as an injection fluid for hydro-mechanical testing combined with in situ CT scanning.

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.99-112
    • /
    • 2019
  • Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.

Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green

  • Cho, Steve S.;Teng, Clare W.;Ravin, Emma De;Singh, Yash B.;Lee, John Y.K.
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.572-581
    • /
    • 2022
  • Objective : Compared to microscopes, exoscopes have advantages in field-depth, ergonomics, and educational value. Exoscopes are especially well-poised for adaptation into fluorescence-guided surgery (FGS) due to their excitation source, light path, and image processing capabilities. We evaluated the feasibility of near-infrared FGS using a 3-dimensional (3D), 4 K exoscope with near-infrared fluorescence imaging capability. We then compared it to the most sensitive, commercially-available near-infrared exoscope system (3D and 960 p). In-vitro and intraoperative comparisons were performed. Methods : Serial dilutions of indocyanine-green (1-2000 ㎍/mL) were imaged with the 3D, 4 K Olympus Orbeye (system 1) and the 3D, 960 p VisionSense Iridium (system 2). Near-infrared sensitivity was calculated using signal-to-background ratios (SBRs). In addition, three patients with brain tumors were administered indocyanine-green and imaged with system 1, with two also imaged with system 2 for comparison. Results : Systems 1 and 2 detected near-infrared fluorescence from indocyanine green concentrations of >250 ㎍/L and >31.3 ㎍/L, respectively. Intraoperatively, system 1 visualized strong near-infrared fluorescence from two, strongly gadolinium-enhancing meningiomas (SBR=2.4, 1.7). The high-resolution, bright images were sufficient for the surgeon to appreciate the underlying anatomy in the near-infrared mode. However, system 1 was not able to visualize fluorescence from a weakly-enhancing intraparenchymal metastasis. In contrast, system 2 successfully visualized both the meningioma and the metastasis but lacked high resolution stereopsis. Conclusion : Three-dimensional exoscope systems provide an alternative visualization platform for both standard microsurgery and near-infrared fluorescent guided surgery. However, when tumor fluorescence is weak (i.e., low fluorophore uptake, deep tumors), highly sensitive near-infrared visualization systems may be required.

Novel Algorithms for Early Cancer Diagnosis Using Transfer Learning with MobileNetV2 in Thermal Images

  • Swapna Davies;Jaison Jacob
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.570-590
    • /
    • 2024
  • Breast cancer ranks among the most prevalent forms of malignancy and foremost cause of death by cancer worldwide. It is not preventable. Early and precise detection is the only remedy for lowering the rate of mortality and improving the probability of survival for victims. In contrast to present procedures, thermography aids in the early diagnosis of cancer and thereby saves lives. But the accuracy experiences detrimental impact by low sensitivity for small and deep tumours and the subjectivity by physicians in interpreting the images. Employing deep learning approaches for cancer detection can enhance the efficacy. This study explored the utilization of thermography in early identification of breast cancer with the use of a publicly released dataset known as the DMR-IR dataset. For this purpose, we employed a novel approach that entails the utilization of a pre-trained MobileNetV2 model and fine tuning it through transfer learning techniques. We created three models using MobileNetV2: one was a baseline transfer learning model with weights trained from ImageNet dataset, the second was a fine-tuned model with an adaptive learning rate, and the third utilized early stopping with callbacks during fine-tuning. The results showed that the proposed methods achieved average accuracy rates of 85.15%, 95.19%, and 98.69%, respectively, with various performance indicators such as precision, sensitivity and specificity also being investigated.

Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment (뇌종양의 등급분류를 위한 관류 자기공명영상을 이용한 투과성영상(Permeability Map)의 유용성 평가)

  • Bae, Sung-Jin;Lee, Joo-Young;Chang, Hyuk-Won
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.325-334
    • /
    • 2009
  • Purpose : This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice$\times$50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  • PDF

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan (소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가)

  • Park, Chan Rok;Choi, Jin Wook;Cho, Seong Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • Purpose: The purpose of study was to evaluate radiation dose for pediatric patients by changing tube voltage (kVp) and tube current (mA) at minimum conditions. By evaluating radiation dose, we want to provide dose reduction for pediatric patients and maintain good quality of SPECT/CT images. Materials and Methods: Discovery NM/CT 670 Scanne was used as SPECT/CT. Tube voltages are 80 and 100 kvP. Tube currents are 10, 15, 20, 25 mA. Using PMMA (Polymethyl methacrylate) Phantom, radiation dose which were calculated at center and peripheral dose and SNRD (Signal to Noise Ratio Dose) were evaluated. Using the CT performance phantom, spatial resolution was evaluated as the MTF (Modulation Transfer Function) graph. Jaszczak phantom was used for SPECT image evaluation by CNR (Contrast to Noise to Ratio). Results: Radiation dose using the PMMA phantom was higher peripheral dose than center dose about 7%. SNRD were 7.8, 8.2, 8.3, 8.8, 8.8, 9.9, 9.8, 9.6 for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. We can distinguish 35, 45, 70, 71, 52, 58, 90, 110 linepair for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA at resolution with MTF. CNR of SPECT images using CT attenuation map were 57.8, 57.7, 57.1, 56.7, 56.6, 56.7, 56.7, 56.7% for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. Conclusion: In this study, radiation dose for pediatric patients showed decreased low dose condition. And SNRD value was similar in all condition. Resolution showed higher value at 100kVp than 80kVp. for CNR, there was no significant difference. we should take additional study to prove better quality and dose reduction.

  • PDF