• Title/Summary/Keyword: Low-carbon alloy

Search Result 161, Processing Time 0.024 seconds

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

  • Han, Chang-Suk;Seo, Han-Byeol
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.370-375
    • /
    • 2016
  • Tensile tests and creep tests were carried out at high temperatures on an Al-$Al_4C_3$ alloy prepared by mechanical alloying technique. The material contains about 2.0% carbon and 0.9% oxygen in mass percent, and the volume fractions of $Al_4C_3$ and $Al_2O_3$ particles are estimated at 7.4 and 1.4%, respectively, from the chemical composition. Minimum creep rate decreased steeply near two critical stresses, ${\sigma}_{cl}$ (the lower critical stress) and ${\sigma}_{cu}$ (the upper critical stress), with decreasing applied stress at temperatures below 723 K. Instantaneous plastic strain was observed in creep tests above a critical stress, ${\sigma}_{ci}$, at each test temperature. ${\sigma}_{cu}$ and ${\sigma}_{ci}$ were fairly close to the 0.2% proof stress obtained by tensile tests at each test temperature. It is thought that ${\sigma}_{cl}$ and ${\sigma}_{cu}$ correspond to the microscopic yield stress and the macroscopic yield stress, respectively. The lower critical stress corresponds to the local yield stress needed for dislocations to move in the soft region within subgrains. The creep strain in the low stress range below 723 K arises mainly from the local deformation of the soft region. The upper critical stress is equivalent to the macroscopic yield stress necessary for dislocations within subgrains or in subboundaries; this stress can extensively move beyond subboundaries under a stress above the critical point to yield a macroscopic deformation. At higher temperatures above 773 K, the influence of the diffusional creep increases and the stress exponent of the creep rate decreases.

Grinding Behaviour of Aluminum Powder for Al/CNTs Nano Composites Fabrication by Dry Grinding Process Using a High Speed Planetary Ball Mill (초고속 유성형 매체 분쇄기를 이용한 건식분쇄공정에서 Al/CNTs 복합재 제조를 위한 알루미늄분말의 분쇄거동)

  • Choi, Heekyu;Lee, Jehyun;Kim, Seongsoo;Choi, Gyungpil;Bae, Daehyung;Lee, Sungbak;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.89-97
    • /
    • 2013
  • The study of grinding behavior characteristics on aluminum powders and carbon nano tubes (CNTs) has recently gained scientific interest due to their useful effect in enhancing advanced nano materials and components, which significantly improves the property of new mechatronics integrated materials and components. We performed a series of dry grinding experiments using a planetary ball mill to systematically investigate the grinding behavior during Al/CNTs nano composite fabrication. This study focused on a comparative study of the various experimental conditions at several variations of rotation speeds, grinding time and with and without CNTs. The results were monitored for the particle size distribution, median diameter, crystal structure from XRD pattern and particle morphology at a given grinding time. It was observed that pure aluminum powders agglomerated with low rotation speed and completely enhanced powder agglomeration. However, Al/CNTs composites were achieved at maximum experiment conditions (350 rpm, 60 min.) of this study by a mechanical alloy process for Al/CNTs mixed powders because the grinding behavior of Al/CNTs composite powder was affected by addition of CNTs. Indeed, the powder morphology and crystal size of the composite powders changed more by an increase of grinding time and rotation speed.

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF

Characterization of Fracture Toughness and Wear Behavior for Plasma Ceramic Coated Materials (플라즈마 코팅재료의 파괴인성과 마모 거동)

  • Ha, Sun-Ho;Lee, Dong-Woo;Rehman, Atta Ur;Wasy, Abdul;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.123-130
    • /
    • 2013
  • Zirconia is well known in industrial applications for its mechanical characteristics. DLC (diamond-like carbon) have high elastic modulus, high electric resistivity, high dielectric constant, high wear resistance, low friction coefficient, bio compatibility, chemically inert and thermally stable. Because of all these physical and chemical properties these types of coatings have become key procedure for thin coating. Friction coefficient of DLC films is already evaluated and the current work is a further advancement by calculating the fracture toughness and wear resistance of these coatings. In the present study DLC thin film coatings are developed on $ZrO_2$ alloy surface using Plasma Enhanced Chemical Vapor Deposition (PECVD) method. Vicker hardness test is employed and it was concluded that, DLC coatings increase the Vickers hardness of ceramics.

Study on the Effect of Austenite Grain Size and Mn Content on Hardenability in Boron-added Low Carbon alloys Steels (보론 첨가 저탄소합금강에서 Mn함량과 오스테나이트 결정입도가 경화능에 미치는 영향에 관한 연구)

  • Huh, U.Y.;Rho, Y.S.;Choi, M.S.;Kim, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.23-40
    • /
    • 1990
  • This study has been carried out to investigate into some effects of Mn content with varying amounts and austenite grain size on hardenability in boron-added Fe-C-Cr-Mo alloy systems. (1) Austenite grains have been found to hardly grow in the temperature range of $900^{\circ}C$ to $950^{\circ}C$, whereas they grow rapidly in the temperature range of $975^{\circ}C$ to $1100^{\circ}C$. (2) Austenite grain growth is considerably small with increasing holding time at a given austenitizing temperature and is, in particular, hardly found to occur at a temperature of $900^{\circ}C$. (3) The hardenability improves ramarkably as Mn content is increased at three different austenitizing temperatures $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. (4) The maximum hardenability is obtained from steels A, B and C austenitized at the $900^{\circ}C$, although Mn content is varied in each specimen.

  • PDF

Rectangular can backward extrusion analysis using FEM (FEM을 이용한 RECTANGULAR CAN 후방압출 해석)

  • 이상승;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

Interpretation for Band-Type Indication on Radiography of 9% Ni Steel Welds for LNG Storage Tanks (액화천연가스 저장탱크 9% 니켈강 용접부의 방사선투과시험 필름에 나타나는 밴드형상의 지시 해석)

  • Lee, Seung-Hyun;Lee, Seung-Rim;Lee, Young-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.479-483
    • /
    • 2010
  • 9% nickel alloy steels used for LNG, cryogenic liquid, storage tank are welded with dissimilar Inconel or Hastelloy welding rod and the weldment shows similar characteristic with the dissimilar metal weld of low carbon steel and austenitic stainless steel. Band type indications are sometimes shown on the film during radiography test of the weldments. Thus this study identified whether the indications are non-relevant indications through material, radiographic test, ultrasonic test, liquid penetrant test and microstructure analysis and also proposed radiography film interpretation and cause of band type indications.