• Title/Summary/Keyword: Low-and intermediate-level radioactive waste

Search Result 136, Processing Time 0.032 seconds

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Development of a Quality Assurance Safety Assessment Database for Near Surface Radioactive Waste Disposal

  • Park J.W.;Kim C.L.;Park J.B.;Lee E.Y.;Lee Y.M.;Kang C.H.;Zhou W.;Kozak M.W.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.556-565
    • /
    • 2003
  • A quality assurance safety assessment database, called QUARK (QUality Assurance Program for Radioactive Waste Management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code.

An Introduction to the Expansion Plan of the Underground Repository of Low- and Intermediate-level Radioactive Waste In Forsmark, Sweden (스웨덴 포쉬마크 중저준위 방사성 폐기물 지하 처분장 확장 계획 소개)

  • Kwon, Saeha;Min, Ki-Bok;Stephansson, Ove
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.339-347
    • /
    • 2016
  • The world's first underground repository for low- and intermediate- level radioactive waste (SFR1) has been in operation since 1988. SFR1 can accommodate $1,000m^3$ of radioactive waste per year with 4 chambers and 1 silo with a total capacity of $63,000m^3$ of radioactive waste. With extended operation time of 10 of the 12 nuclear power reactors and dismantling of the other 2 nuclear reactors, more nuclear waste need to be disposed in the future. Therefore, Swedish Nuclear Fuel and Waste Management Company (SKB) submitted a license application for a repository extension (SFR3) that consists of 6 additional rock chambers with a capacity of $108,000m^3$ of radioactive waste and for accommodating 9 boiling water reactor tanks. In this study, plans for the extension SFR3 are presented with the geological, geomechanical and hydrogeological issues to be considered.

Measurement of Ultrasonic Speed for Evaluating Compressive Strength of Solidified Low & Intermediate-Level Radioactive Wastes (중·저준위 방사성폐기물 고화체의 압축강도 평가를 위한 초음파속도 측정)

  • Moon, Gyoon Young;Lee, Tae Hun;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2011
  • In order to ship low & Intermediate level radioactive waste drums, which have been temporarily stored on site, to a disposal facility, their physical and chemical properties should be evaluated and proven to meet the acceptance guideline prior to their shipment. Ultrasonic velocity method, which has been used to estimate the strength of concrete, can be suggested to evaluate the compressive strength of solidified radioactive waste, which is one of the evaluated properties. The strength is estimated from acoustic velocity. However, a guided wave traveling along a drum is generated when applying ultrasonic method to the drum, and this makes it difficult to analyze the signal due to overlap between transmitted wave through the contents in drum and the guided wave. This paper reported feasibility of ultrasonic method to evaluate of the compressive strength of the solidified LLW. It is observed that the guide wave is greater than transmitted wave, and ultrasonic velocity could be estimated from transmitted wave signal arriving prior to the guided wave

Characterization of Glass Melts Containing Simulated Low and Intermediate Level Radioactive Waste

  • Jung, Hyun-Su;Kim, Ki-Dong;Lee, Seung-Heon;Kwon, Sung-Ku;Kim, Cheon-Woo;Park, Jong-Kil;Hwang, Tae-Won;Ahn, Zou-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.148-151
    • /
    • 2006
  • In order to examine the process parameters for the vitrification of Low and Intermediate Level radioactive Waste (LILW) generated from nuclear power plants, measurements of several melt properties was performed for four selected glasses containing simulated waste. Electrical conductivity and viscosity were determined at temperatures ranging from 1123 to $1673^{\circ}C$. The temperature dependences of both properties in the molten state showed a similar behavior in which their values decrease as the temperature increases. The values of the electrical conductivity and viscosity at a temperature of 1423K adopted in an induction cold crucible melter process were $0.27{\sim}0.42$ S/cm and $9.8{\sim}42$ dPas, respectively.

Performance Assessment of Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea by Using Complementary Indicator: Case Study with Radionuclide Flux (보조지표를 활용한 중·저준위 처분시설 성능평가: 방사성 핵종 플럭스 사례연구)

  • Jung, Kang-Il;Jeong, Mi-Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.73-86
    • /
    • 2015
  • The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.

Development of the Safety Assessment Code (CALM) for the Disposal of Low-and Intermediate-Level Radioactive Waste (중ㆍ저준위 방사성폐기물 처분안정성 평가코드(CALM) 개발)

  • Han, Kyong-Won;Cho, Won-Jin;Lee, Han-Soo;Lee, Youn-Myoung;Park, Hee-Sung;Suh, Kyung-Suk;Park, Heu-Joo-;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1990
  • A safety assessment computer code CALM (Computer program of Assessment for LILW Management) is developed for the theoretical prediction of long-term safety of low-and intermediate-level radioactive waste disposal. CALM is composed of three submodels, which are the resaturation model, the geosphere migration model, and the radiation dose model. For the verification of its usefulness, the safety assessment of an assumed waste repository is performed. The results show that the computer code, CALM developed through this study can be a useful tool for the safety assessment of low- and intermediate-level radioactive waste repository.

  • PDF