• Title/Summary/Keyword: Low-and intermediate-level radioactive waste

Search Result 77, Processing Time 0.209 seconds

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Preparation and Management of the Input Data for the Safety Assessment of Low- and Intermediate-level Radioactive Waste Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 안전성평가를 위한 입력데이터 설정 및 관리에 대한 고찰)

  • Park, Jin Beak;Kim, Hyun-Joo;Lee, Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.345-361
    • /
    • 2014
  • The systematic quality assurance activities on documents of the safety assessment are required for the safety case of the low- and intermediate-level radioactive waste disposal facility. In this paper, quality assurance system focused on the input data including the site characterization, groundwater flow, system design and monitoring are prepared and discussed. Rule for the input data selection is suggested and applied for the safety assessment which is based on the in-situ/experiment observations, final facility design and waste pileup plan, engineered barrier, field monitoring, recent biosphere, and radionuclide inventory. The reduction of data uncertainty will be expected to contribute to the safety of disposal facility further.

Development of the Safety Case Program for the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설을 위한 Safety Case 종합프로그램의 개발)

  • Park, Jin Beak;Jeong, Jong Tae;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The safety case program has been prepared for the development of the disposal facility of low- and intermediate-level radioactive waste in Korea. For the development of the radioactive waste disposal facility, this program can be applied for the safety demonstration of the facility and for the safety judgment of development step based on the international standards and domestic development environment. Systematic safety approach of this program includes the safety strategies such as optimization, robustness, demonstrability and defense-in-depth principle which are based on the safety principle and objectives. From the quality of assessment basis, safety arguments focused on the uncertainty management and the confidence building can assure the disposal safety during the step-wise safety assessment.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Prediction of Radionuclide Inventory for the Low- and Intermediate-Level Radioactive Waste Disposal Facility by the Radioactive Waste Classification (방사성폐기물 신분류기준을 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 예측)

  • Jung, Kang Il;Jeong, Noh Gyeom;Moon, Young Pyo;Jeong, Mi Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.63-78
    • /
    • 2016
  • To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch (플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발)

  • Moon, Young-Pyo;Cho, Chun-Hyung;Song, Myung-Jae;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.