• 제목/요약/키워드: Low-and intermediate-level radioactive waste

Search Result 77, Processing Time 0.096 seconds

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.

Preliminary Evaluation of Radiological Impact for Domestic On-road Transportation of Decommissioning Waste of Kori Unit 1

  • Dho, Ho-Seog;Seo, Myung-Hwan;Kim, Rin-Ah;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.537-548
    • /
    • 2020
  • Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and large-sized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic on-road transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.

Statistical Methodologies for Scaling Factor Implementation: Part 1. Overview of Current Scaling Factor Method for Radioactive Waste Characterization

  • Kim, Tae-Hyeong;Park, Junghwan;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.517-536
    • /
    • 2020
  • The radionuclide inventory in radioactive waste from nuclear power plants should be determined to secure the safety of final repositories. As an alternative to time-consuming, labor-intensive, and destructive radiochemical analysis, the indirect scaling factor (SF) method has been used to determine the concentrations of difficult-to-measure radionuclides. Despite its long history, the original SF methodology remains almost unchanged and now needs to be improved for advanced SF implementation. Intense public attention and interest have been strongly directed to the reliability of the procedures and data regarding repository safety since the first operation of the low- and intermediate-level radioactive waste disposal facility in Gyeongju, Korea. In this review, statistical methodologies for SF implementation are described and evaluated to achieve reasonable and advanced decision-making. The first part of this review begins with an overview of the current status of the scaling factor method and global experiences, including some specific statistical issues associated with SF implementation. In addition, this review aims to extend the applicability of SF to the characterization of large quantities of waste from the decommissioning of nuclear facilities.

Statistical Approach for Derivation of Quantitative Acceptance Criteria for Radioactive Wastes to Near Surface Disposal Facility

  • Park Jin Beak;Park Joo Wan;Lee Eun Yong;Kim Chang Lak
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.387-398
    • /
    • 2003
  • For reference human intrusion scenarios constructed in previous study, a probabilistic safety assessment to derive the radionuclide concentration limits for the low- and intermediate- level radioactive waste disposal facility is conducted. Statistical approach by the Latin Hypercube Sampling method is introduced and new assumptions about the disposal facility system are examined and discussed. In our previous study of deterministic approach, the post construction scenarios appeared as most limiting scenario to derive the radionuclide concentration limits. Whereas, in this statistical approach, the post drilling and the post construction scenarios are mutually competing for the scenario selection according to which radionuclides are more important in safety assessment context. Introduction of new assumption shows that the post drilling scenario can play an important role as the limiting scenario instead of the post-construction scenario. When we compare the concentration limits between the previous and this study, concentrations of radionuclides such as Nb-94, Cs-137 and alpha-emitting radionuclides show elevated values than the case of the previous study. Remaining radionuclides such as Sr-90, Tc-99 I-129, Ni-59 and Ni-63 show lower values than the case of the previous study.

Assessment Of Radionuclide Release Rates From The Engineered Barriers And The Quantification Of Their Uncertainties For A Low- And Intermediate-Level Radioactive Waste Repository (방사성폐기물처분장 인공방벽으로부터의 핵종유출률 평가 및 불확실도 정량화)

  • W.J. Cho;Lee, J.O.;P.S. Hahn;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-89
    • /
    • 1994
  • The radionuclide release rates from the engineered barrier composed of concrete structure and clay-based backfill in a low and intermediate level waste repository were assessed. Four types of release pathway were considered, and the contribution of each pathway to the total release were analyzed. To quantify the effect of uncertainties of input parameter values on the assessment of radionuclide release rates, the Latin Hypercube sampling method was used, and the resulting release rate distribution were determined through a goodness-of-fit test. Finally, the ranges of maxi-mum release rates ore estimated statistically with a confidence level of 95%.

  • PDF

Licensing Review Scheme for Low and Intermediate Level Radioactive Waste Disposal Facility ($\cdot$저준위방사성폐기물처분시설 인허가심사 방안)

  • 전제근;정승영;장재권;이관희;박원재;박상훈
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.283-289
    • /
    • 2003
  • In order to establish the licensing review system for LILW disposal facility, we have studied the licensing review structure of oversea's countries, including United State, Japan, and France. We have also reviewed the domestic licensing review structure and the current status of development of safety standards for LILW management. A licensing review for LILW disposal facility can be implemented in 5-6 steps according to Atomic Energy Act. It is estimated to take 32 months for the CP and the OL review for LILW disposal facility referencing to the licensing review practice of the nuclear power plant. To date, a total of 15 MOST Notices have been developed to apply to the safe management of radwaste and 5 more MOST Notices will be developed by 2005.

  • PDF

Site Monitoring and investigation plan for LILW disposal (방사성폐기물 처분장 부지감시 계획)

  • Baek, Seung-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.369-385
    • /
    • 2008
  • The purpose of site monitoring and investigation is to offer the basic data for performance assessment and design of low- and intermediate-level radioactive waste(LILW) disposal facility by monitoring variations of main site properties continually in the stage of pre-operation, operation and post-closure. Main contents of site monitoring are as follows. In the stage of pre-operation, suitability evaluation for disposal facility and monitoring for constructing and operating disposal facility are performed. In the operation period, monitoring is performed including surroundings to research the influence to environment with operating disposal facility and operate safely and efficiently. In the post-closure period, monitoring about major site properties is performed to prevent the effect of radioactive waste from disposal facility and to secure long-term safety.

  • PDF

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Preliminary Post-closure Safety Assessment of Disposal System for Disused Sealed Radioactive Source (폐밀봉선원 처분시스템 예비 폐쇄후 안전성평가)

  • Lee, Seunghee;Kim, Juyoul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.33-48
    • /
    • 2017
  • An optimum disposal plan of disused sealed radioactive sources (DSRSs) should be established to ensure long-term disposal safety at the low- and intermediate-level radioactive waste (LILW) disposal facility in Gyeongju. In this study, an optimum disposal system was suggested and preliminary post-closure safety assessment was performed. The DSRSs disposal system was composed of a rock cavern and near surface disposal facilities at the Gyeongju LILW disposal facility. The assessment was conducted using GoldSim program, and probabilistic assessment and sensitivity analysis were implemented to evaluate the uncertainties in the input parameters of natural barriers. Deterministic and probabilistic calculations indicated that the maximum dose was below the regulatory limits ($0.1mSvyr^{-1}$ for the normal scenario, $1mSvyr^{-1}$ for the well scenario). It was concluded that the DSRSs disposal system would maintain environmental safety over a long-time. Moreover, the partition coefficient of Np in host rock, Darcy velocity in host rock, and density of the host rock were the most sensitive parameters in predicting exposure dose in the safety assessment.

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.